• Title/Summary/Keyword: Gan Algorithm

Search Result 73, Processing Time 0.022 seconds

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

KNN-Based Automatic Cropping for Improved Threat Object Recognition in X-Ray Security Images

  • Dumagpi, Joanna Kazzandra;Jung, Woo-Young;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1134-1139
    • /
    • 2019
  • One of the most important applications of computer vision algorithms is the detection of threat objects in x-ray security images. However, in the practical setting, this task is complicated by two properties inherent to the dataset, namely, the problem of class imbalance and visual complexity. In our previous work, we resolved the class imbalance problem by using a GAN-based anomaly detection to balance out the bias induced by training a classification model on a non-practical dataset. In this paper, we propose a new method to alleviate the visual complexity problem by using a KNN-based automatic cropping algorithm to remove distracting and irrelevant information from the x-ray images. We use the cropped images as inputs to our current model. Empirical results show substantial improvement to our model, e.g. about 3% in the practical dataset, thus further outperforming previous approaches, which is very critical for security-based applications.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

Pragmatic Assessment of Optimizers in Deep Learning

  • Ajeet K. Jain;PVRD Prasad Rao ;K. Venkatesh Sharma
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.115-128
    • /
    • 2023
  • Deep learning has been incorporating various optimization techniques motivated by new pragmatic optimizing algorithm advancements and their usage has a central role in Machine learning. In recent past, new avatars of various optimizers are being put into practice and their suitability and applicability has been reported on various domains. The resurgence of novelty starts from Stochastic Gradient Descent to convex and non-convex and derivative-free approaches. In the contemporary of these horizons of optimizers, choosing a best-fit or appropriate optimizer is an important consideration in deep learning theme as these working-horse engines determines the final performance predicted by the model. Moreover with increasing number of deep layers tantamount higher complexity with hyper-parameter tuning and consequently need to delve for a befitting optimizer. We empirically examine most popular and widely used optimizers on various data sets and networks-like MNIST and GAN plus others. The pragmatic comparison focuses on their similarities, differences and possibilities of their suitability for a given application. Additionally, the recent optimizer variants are highlighted with their subtlety. The article emphasizes on their critical role and pinpoints buttress options while choosing among them.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

Enhanced Sound Signal Based Sound-Event Classification (향상된 음향 신호 기반의 음향 이벤트 분류)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.193-204
    • /
    • 2019
  • The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

An Efficient Wireless Signal Classification Based on Data Augmentation (데이터 증강 기반 효율적인 무선 신호 분류 연구 )

  • Sangsoon Lim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

Joint Overlapped Block Motion Compensation Using Eight-Neighbor Block Motion Vectors for Frame Rate Up-Conversion

  • Li, Ran;Wu, Minghu;Gan, Zongliang;Cui, Ziguan;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2448-2463
    • /
    • 2013
  • The traditional block-based motion compensation methods in frame rate up-conversion (FRUC) only use a single uniquely motion vector field. However, there will always be some mistakes in the motion vector field whether the advanced motion estimation (ME) and motion vector analysis (MA) algorithms are performed or not. Once the motion vector field has many mistakes, the quality of the interpolated frame is severely affected. In order to solve the problem, this paper proposes a novel joint overlapped block motion compensation method (8J-OBMC) which adopts motion vectors of the interpolated block and its 8-neighbor blocks to jointly interpolate the target block. Since the smoothness of motion filed makes the motion vectors of 8-neighbor blocks around the interpolated block quite close to the true motion vector of the interpolated block, the proposed compensation algorithm has the better fault-tolerant capability than traditional ones. Besides, the annoying blocking artifacts can also be effectively suppressed by using overlapped blocks. Experimental results show that the proposed method is not only robust to motion vectors estimated wrongly, but also can to reduce blocking artifacts in comparison with existing popular compensation methods.