• Title/Summary/Keyword: Gamma-ray spectrum

Search Result 158, Processing Time 0.029 seconds

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

Response Analysis of the NE213-PSD System for Neutron Energy Spectreum Measurement (중성자 에너지 측정을 위한 NE213-PSD 장치의 감응 분석)

  • Lee, Kyung-Ju
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.367-372
    • /
    • 1992
  • In order to measure the energy spectrum of a radioactive neutron source, the pulse shape discrimination (PSD) system with organic scintillator, NE-213, was characterized by using some of the gamma ray sources and neutron source, Am-Be. The figure of merit of the rise time spectrum of AmBe source measured by this system was about 1.13. This value agrees well with the value of 1.3 which is measured for monoenergetic source, $^{12}C(d,\;n)^{13}N$. The results of present experiment for performance test of NE213-PSD system will provide the useful technique to measure the spectrum of neutron-gamma mixed field and to establish the neutron energy spectrum and flux density standards.

  • PDF

A new approach for modeling pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of NPP accident

  • R.I. Bakin;A.A. Kiselev;E.A. Ilichev;A.M. Shvedov
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4715-4721
    • /
    • 2022
  • A comprehensive approach for modeling the pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of accident at NPP has been developed. It involves modeling the transport of radionuclides in the atmosphere using Lagrangian stochastic model, WRF meteorological processor with an ARW core and GFS data to obtain spatial distribution of radionuclides in the air at a given moment of time. Applying representation of the cloud as superposition of elementary sources of gamma radiation the pulse height spectra are calculated based on data on flux density from point isotropic sources and detector response function. The proposed approach allows us to obtain time-dependent spectra for any complex radionuclide composition of the release. The results of modeling the pulse height spectra of the scintillator detector NaI(Tl) Ø63×63 mm for a hypothetical severe accident at a NPP are presented.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

A Study on the Development of Nuclear Radiation Detector with Silicon PIN Photodiode (실리콘 포토다이오드를 이용한 방사선 검출기 개발에 관한 연구)

  • Yi, Un-K.;Kim, Jung-S.;Sohn, Chang-H.;Baek, Kwang-R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.754-756
    • /
    • 1999
  • In this paper, we have developed a high-sensitivity SNRD(Semiconductor Nuclear Radiation Detector) using silicon PIN photodiode. The SNRD is constructed with silicon PIN photodiode(S3590-05), preamplifier and shaping amplifier. To show the effectiveness of SNRD, nuclear radiation experiments are conducted with $\gamma$-ray Ba-133, Cs-137 and Co-60. The SNRD is different in characteristics of the energy spectrum to scintillation detectors. However, the SNRD have a good linearity on $\gamma$-ray energy and activity. The results of this paper can be applied to electronic personal dosimeter.

  • PDF

Measurement of Branching Ratio for broad 27-keV Resonance of $^{19}F(n,g)^{20}F$ Reaction by using Time-of-flight Method with Anti-Compton NaI(Tl) Spectrometer

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 2008
  • The neutron capture spectrum for the light nuclide was very useful to study the nuclear structure. In the present study, the capture gamma-ray from the 27-keV resonance of $^{19}F(n,g)^{20}F$ reaction were measured with an anti-Compton NaI(Tl) spectrometer and the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo institute of technology. A neutron Time-of-Flight method was adopted with a 1.5 ns pulsed neutron source by the $^7Li(p,n)^7Be$ reaction. In the present experiment, a Teflon(($CF_2$)n) sample was used The sample was disk with a diameter of 90mm. The thickness of sample was determined so that reasonable counting rates could be obtained and the correction was not so large for the self-shielding and multiple scattering of neutrons in the sample, and was 5mm. The primary gamma-ray transitions were compared with previous measurement of Kenny.

  • PDF

NOVEL PICTURE OF THE AGN CENTRAL ENGINE ESTABLISHED BY X-RAY AND OPTICAL SIMULTANEOUS STUDIES

  • NODA, HIROFUMI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.417-421
    • /
    • 2015
  • We analyzed 0.5-45 keV data of NGC 3227 observed by Suzaku six times between 2008 October 28 and December 2. The count-count plot between the 0.5-3 keV and 3-10 keV bands exhibits a clear break, separating the data into bright and faint phases. Applying the difference spectrum method and time-averaged spectral fits to the phase data, we found the presence of two kinds of variable primary X-rays, (1) a hard primary component with ${\Gamma}{\sim}1.7$ dominating in the faint phase and (2) a soft primary continuum with ${\Gamma}{\sim}2.4$ appearing in the bright phase, both affected by partial absorption. Considering their timing and spectral characteristics, component (1) is presumably identical to a Compton continuum in the low/hard state, while component (2) may correspond to the hard tail emission in the high/soft state, or compact-jet emission. In that case, an accretion ow onto the central super massive black hole in NGC 3227 can be interpreted to include the two different states.

Response Function of HPGe Detector using $^{23}Na$(p, $\gamma$)$^{24}Mg$ and $^{27}Al$(p, $\gamma$)$^{28}Si$ Reaction ($^{23}Na$(p, $\gamma$)$^{24}Mg$$^{27}Al$(p, $\gamma$)$^{28}Si$반응을 이용한 HPGe 검출기의 응답함수)

  • Park, Sang-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • In the present work, peak relative efficiency for the energy was obtained and response function was worked out. This study was carried out using the high resolution high efficiency HPGe detector(diameter 78.7 mm, length 86.5 mm) and NaI(Tl) detector for anti-compton. The anti-coincidence of the signals from the two detectors could be used to lessen the Compton effect signal; thus, the $\gamma$-ray energy resolution could be improved. The $\gamma$-ray spectrum was measured at $55^{\circ}$ to the direction of the incident proton beam. Reaction spectrum was obtained from the $^{23}Na$(p, $\gamma$)$^{24}Mg$ reaction at $E_p$ = 1424 keV and $^{27}Al$(p, $\gamma$)$^{28}Si$ reaction at $E_p$ = 992 keV. To accelerate the incident proton which creates the (p, $\gamma$) capture reaction, the 3 MeV Pelletron accelerator at the Tokyo Institute of Technology was used. Response function was worked out by a noble technique. We worked out a response function from 1.2 to 9.4 MeV at intervals of 0.75 MeV.