• Title/Summary/Keyword: Gamma transmission

Search Result 174, Processing Time 0.029 seconds

The Synthesis of Maghemite and Hematite Nanospheres

  • Dar, Mushtaq Ahmad;Ansari, Shafeeque G.;Wahab, Rizwan;Kim, Young-Soon;Shin, Hyung-Shik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.472-473
    • /
    • 2006
  • Maghemite and hematite nanospheres were synthesized by using the Sol-gel technique. The structural properties of these nanosphere powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and pore size distribution. Hematite phase shows crystalline structures. The mean particle size that resulted from BET and XRD analyses were 4.9 nm and 2 nm. It can be seen from transmission electron microscopy that the size of the particles are very small which is in good agreement with the FESEM and the X-ray diffraction. The BET and pore size method were employed for specific surface area determination.

  • PDF

Enhancement of haze Images Using Adaptive Transmission (영상의 적응적인 전달량을 이용한 안개 영상 개선)

  • Pang Jun Ho;Jeong Hyeon Jeong;kim Jin Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.85-88
    • /
    • 2024
  • 안개 영상은 먼지, 안개 등의 원인으로 영상 내의 물체가 흐리게 보이며, 빛의 산란으로 인하여 영상의 밝기가 높다. 기존의 다크 채널 방식은 하늘 영역을 따로 처리하지 않고, 안개 영상에서 얻어지는 다크채널을 바탕으로 전달량을 추정한다. 이러한 방식은 안개 영상 내 하늘 영역이 왜곡되는 문제가 발생하게 된다. 이와 같은 문제점을 해결하기 위하여 본 논문에서는 영상의 반전, 유클리드, 그리고 감마보정을 이용한 적응형 전달량을 추정하여 성능을 개선하였다.

  • PDF

Experimental assessment for the photon shielding features of silicone rubber reinforced by tellurium borate oxides

  • M. Elsafi;Heba jamal ALasali;Aljawhara H. Almuqrin;K.G. Mahmoud;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2166-2171
    • /
    • 2023
  • In the present study, six silicone rubber doped by tellurium borate oxides were fabricated using the casting method. The densities of the fabricated silicon rubber-doped by tellurium borate oxides samples were measured using the Archimedes Method. Moreover, the linear attenuation coefficient of silicone rubber doped tellurium borate oxides samples was evaluated experimentally using the hyper pure germanium, and the recorded linear attenuation coefficient values were affirmed using the theoretical Phy-X program. The experimental measurements were performed using the narrow beam transmission method with radioactive isotopes Am-241, Cs-137, and Co-60 with energies of 59, 661, 1173, and 1332 keV. The linear attenuation coefficient values showed an enhancement by 4.73 times, 1.20 time, 1.17, time, and 1.17 time, respectively at gamma photon energies of 59, 661, 1173, and 1332 keV, when the TeO2 concentration increased in the fabricated composites from 0 to 50 wt%. The enhancement of the linear attenuation coefficient values has a positive effect on the transmission rate values where the half-value thickness and transmission rate were decreased accompanied by an increase in the RPE.

Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants (HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향)

  • Kim, Jeong Kil;Shim, Deog Nam;Park, Hae Ji
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

Plasma, Tissue Thiobarbituric Acid Reactive Substance and Lymphocyte Oxidative DNA Damage in Mouse Fed Gamma Irradiated Diet (방사선 조사 사료를 섭취한 Mouse의 혈장, 간, 소장 점막의 과산화지질과 림프구 DNA의 산화적 손상)

  • 장현희;강명희;양재승;이선영
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Food irradiation has been steadily increasing in many countries in line with increasing international trade and concerns about naturally occurring harmful contaminants in food. Although irradiation provides an excellent safeguard for the consumer by destroying almost 100% of harmful bacteria, it is necessary to ensure the safety of irradiated foods. This study was performed to investigate the effect of an irradiated diet on lipid peroxidation in the plasma, liver, small intestinal mucosa, and lymphocyte DNA damage in mice. Eight-week old ICR mice were assigned to two groups to receive either non-irradiated or irradiated (10 kGy) diets containing 20.38% fish powder and 6.06% sesame seeds for 4 weeks. The resulting changes in the degrees of lipid peroxidation were evaluated based on the level of plasma and liver thiobarbituric acid reactive substance (TBARS), transmission electron micrograph of jejunal mucosa, and free radical-induced oxidative DNA damage in lymphocytes, as measured by alkaline comet assay (single cell gel electrophoresis). The peroxide values of the gamma irradiated diet were measured every week, and the sample for comet assay was taken at the end of the four week experimental period. There was no significant difference in food efficiency ratio between the two groups. The peroxide values of the diet were immediately increased to 35.5% after gamma irradiation and kept on increasing during storage. After 4 weeks, no differences in tissue or plasma TBARS value were observed between the two groups, but epithelial cells of jejumum showed osmiophillic laminated membranous structures, considered as myelin figures,. The oxidative DNA damage expressed as tail moment (TM) increased 30% in the blood lymphocytes of the mice fed the irradiated diet. In conclusion, the comet assay sensitively detected differences in lymphocyte DNA damage after feeding with the irradiated diet for 4 weeks. However, in order to ensure the safety of irradiated foods, it would be more useful to conduct a long-term feeding regimen using an irradiated diet and examine the level of lipid peroxidation and the state of oxidative stress in a greater range of organs.

Capacity esitmation of microcell in macro/microcell overlaid W-CDMA WLL system (매크로셀과 마이크로셀이 중첩된 W-CDMA 무선가입자망에서 마이크로셀의 용량 산정)

  • 손성찬;노재성;김수용;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2153-2164
    • /
    • 1998
  • This paper has presented the parameters for the coexistence between two systems in macro/microcell ovelaid W-CDMA WLL (wideband CDMA wireless local loop) and has calculated the capacity of forward/reverse link in microcell. To produce the capacity for analyzing system interference effects, we have shown tables and graphs with the parameters sucyh as RF channel bandwidth of WLL(W), the transmission rate of service message(R), the required signal power to noise power ratio( $E_{b/}$ $N_{0}$) for achieving accepatable error rate, te user number ( $N_{W1}$, $N_{W2}$) of the neighboring system, the signal power to interference power ratio(.GAMMA.$_{C1B}$, .GAMMA.$_{C2B}$) of the neighboring system, the normalized distance(d) between microcell and macrocell base-station, and microcell to macrocell radius ratio ( $R_{d}$). From the results, we have convinced that the capacity of microcell diminishes as increasing the user number ( $N_{W2}$) in macrocell, increasing the microcell radius, and decreasing the normalized distance(d) between microcell and macrocell base-station. Especially, we have known that when $R_{d}$=0.1, $N_{W2}$ must be below 24 at .GAMMA.$_{C2B}$ = 0 dB and below 8 at .GAMMA.$_{C2B}$ = 4 dB for the acceptable capacity raito to be over 80%. Therfore, this paper is usefult to design microcell W-CDMA WLL for accommodating more user number under the interference effects of macrocell W-CDMA WLL and is expected to be reference in power control if base-station.ation.ion.ation.ation.

  • PDF

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code

  • Tekin, H.O.;ALMisned, Ghada;Issa, Shams A.M.;Zakaly, Hesham M.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3317-3323
    • /
    • 2022
  • Half Value Layer calculations theoretically need prior specification of linear attenuation calculations, since the HVL value is derived by dividing ln(2) by the linear attenuation coefficient. The purpose of this study was to establish a direct computational model for determining HVL, a vital parameter in nuclear radiation safety studies and shielding material design. Accordingly, a typical gamma-ray transmission setup has been modeled using MCNPX (version 2.4.0) general-purpose Monte Carlo code. The MCNPX code's INPUT file was designed with two detection locations for primary and secondary gamma-rays, as well as attenuator material between those detectors. Next, Half Value Layer values of some well-known gamma-ray shielding materials such as lead and ordinary concrete have been calculated throughout a broad gamma-ray energy range. The outcomes were then compared to data from the National Institute of Standards and Technology. The Half Value Layer values obtained from MCNPX were reported to be highly compatible with the HVL values obtained from the NIST standard database. Our results indicate that the developed INPUT file may be utilized for direct computations of Half Value Layer values for nuclear safety assessments as well as medical radiation applications. In conclusion, advanced simulation methods such as the Monte Carlo code are very powerful and useful instruments that should be considered for daily radiation safety measures. The modeled MCNPX input file will be provided to the scientific community upon reasonable request.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

  • Gong, Pin;Ni, Minxuan;Chai, Hao;Chen, Feida;Tang, Xiaobin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.470-477
    • /
    • 2018
  • With a highly functional methyl vinyl silicone rubber (VMQ) matrix and filler materials of $B_4C$, PbO, and benzophenone (BP) and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were $323.6^{\circ}C$ and $335.3^{\circ}C$, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am-Be neutron source. The transmission of ${\gamma}$-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively.