• 제목/요약/키워드: Gamma ray imaging system

검색결과 43건 처리시간 0.023초

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

가중 퍼텐셜에 기초한 CT용 CdZnTe 소자 설계 (CdZnTe Detector for Computed Tomography based on Weighting Potential)

  • 임현종;박찬선;김정수;김정민;최종학;김기현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권1호
    • /
    • pp.35-42
    • /
    • 2016
  • CdZnTe(CZT)는 상온에서 동작 가능한 II-VI족 기반의 화합반도체로 CT (Computed Tomography)나 맘모그라피 (mammography)용 검출기로 적용하면, 환자의 피폭선량을 저감할 수 있는 획기적인 소자재료이다. 픽셀(pixel)과 픽셀 피치(pixel pitch)에 따라 X선 변환효율과 신호 교차 (cross-talk)에 영향을 주어 영상 품질이 결정된다. 가중 퍼텐셜 (weighting potential)은 전극의 위치와 형태에 의해서 결정지어지는 가상 퍼텐셜로 Poisson's 방정식의 해를 통해서 구할 수 있다. 본 연구에서는 컴퓨터 기반의 모의실험을 통해 가상 퍼텐셜을 계산하고, 전하유도효율(CIE; charge induction efficiency)과 신호교차를 고려하여 CT용 센서에 적합한 픽셀을 결정하고자 하였다. 모의실험에서 1 mm의 픽셀피치와 2 mm 두께의 CZT를 가정하여, 다양한 픽셀과 픽셀피치를 설정 후 가중 퍼텐셜을 계산하였다. 픽셀의 크기가 $750{\mu}m$이고 픽셀간의 간격이 $250{\mu}m$일 때 최대 전하유도 효율과 최소 신호교차를 나타내었다.

MC-50 싸이클로트론을 이용한 $^{123}I$ 제법 연구 (The Development of Iodine-123 with MC-50 Cyclotron)

  • 서용섭;양승대;전권수;이종두;한현수
    • 대한핵의학회지
    • /
    • 제25권2호
    • /
    • pp.286-293
    • /
    • 1991
  • $^{123}I$, which is applied for the thyroid and other in vivo kinetic study, has a special role in life sciences. The 159 KeV $\gamma-ray$ from $^{123}I$ is almost ideally appropriate for the current imaging instrumentation. Its decay mode (electron capture) and short half-life (13.3 hr) reduced the burden of radiation dose to the patients, and its chemical property makes it easy to synthesize the labelling compounds. In this experiment, the production of $^{123}I$ via the nuclear reaction $^{124}Te(p,2n)^{123}I$ with 28 MeV protons was sutdied. $TeO_2$ is used as a target material, because it has good physical properties. The target was prepared with $TeO_2$ powder and was molten into a ellipsoidal cavity (a=14 mm, b=10 mm, $270.8mg/cm^2$ thick) of pure platinum. The irradiation was carried out in the external proton beam with incident energies range from 28 MeV to 22 MeV, and current was $30{\mu}A$. The loss of $TeO_2$ target was significantly reduced by using $4\pi-cooling$ system in irradiation. The dry distillation method was adopted for the separation of $^{123}I$ from irradiated target, and when it was kept 5 minutes at $780^{\circ}C$, its result was quantitative. The loss of the target material $(TeO_2)$ was below 0.2% for each production run and $^{123}I$ from the dry distillation apparatus was captured with 0.01 N NaOH in $Na^{123}I$ form, then the pH of the solution was adjusted to $7.5\sim9.0$ with HC1/NaOH. The $Na^{123}I$ solution was passed through $0.2{\mu}m$ membrane filter, and sterilized under high pressure and temperature for 30 minutes. The production of $^{123}I$ is acceptable for clinical application based on the quality of USP XXI.

  • PDF