• Title/Summary/Keyword: Gamma radiation detection

Search Result 198, Processing Time 0.023 seconds

Comparison of Gamma Irradiation and Sodium Hypochlorite Treatments to Inactivate Staphylococcus aureus and Pseudomonas aeruginosa Biofilms on Stainless Steel Surfaces

  • Kim, Jang-Ho;Jo, Cheo-Run;Rho, Yong-Taek;Lee, Chun-Bok;Byun, Myung-Woo
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.315-319
    • /
    • 2007
  • Biofilm formation on various surfaces is a well-known phenomenon and it has caused pollution problems, health and safety hazards, and substantial economic loss in many areas including the food industry. In the present study, Gamma irradiation at a dose of 2.0 kGy reduced the bacterial counts of Staphylococcus aureus and Pseudomonas aeruginosa suspensions by 6.7 and >6.5 log CFU/mL, respectively, and 30 ppm of sodium hypochlorite effectively reduced the counts of both bacterial suspensions to below the limit of detection ($<2\;log\;CFU/cm^2$). However, in bacterial biofilms attached to stainless steel, gamma irradiation at a dose of 10.0 kGy reduced the counts of S. aureus attached fur 1 hr and overnight by ${\geq}5.1\;and\;5.0\;log\;CFU/cm^2$, respectively. Gamma irradiation at a dose of 1.0 kGy reduced the counts of P. aeruginosa counts to below the limit of detection ($<2\;log\;CFU/cm^2$). On the contrary, S. aureus and P. aeruginosa cells attached to stainless steel chips were difficult to eliminate using sodium hypochlorite. Four hundred ppm of sodium hypochlorite reduced the counts of S. aureus and P. aeruginosa attached for 1 hr by 2.5 and $3.3\;log\;CFU/cm^2$, respectively.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

The Study of CsI(Tl) Scintillation Detector Design and Signal Processing for the Measurement of the Radiation Distribution (방사선 분포측정용 CsI(Tl) 검출기 설계 및 신호처리에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.778-779
    • /
    • 2016
  • In This paper, We designed the scintillation detector for measuring radiation signals in units of pixels for a radiation source that is distributed in the space. And we carried out a study to design a radiation imaging by the module for obtaining the detection signal. For measuring radiation distribution we configure a radiation detector combining CsI(Tl) scintillator and a photodiode. In addition, its performance was verified via gamma irradiation test.

  • PDF

Effect of Gamma Irradiation on the Microflora of Commercial Ready-To-Use (RTU) Salads during Cold Storage

  • Kim, Jang-Ho;Lee, Ju-Woon;Lee, You-Seok;Oh, Sang-Hee;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.232-235
    • /
    • 2004
  • Since ready-to-use (RTU) products are not fully cooked, the shelf-life of the product is comparably short and the products are easily spoiled when contaminated with food-borne pathogens. Low-dose gamma irradiation of 0.5, 1, or 2 kGy effectively reduced the total aerobic bacterial counts in 2 Korean manufactured RTU products by 1.63 to 2.95 log CFU/g during cold storage. Irradiation at 2 kGy reduced the psychrotrophic bacterial counts in most of the samples to below the limit of detection (< log CFU/g). Irradiation at 0.5 kGy completely eliminated Escherichia coli from the commercial RTU samples.

Identification of Irradiated Seafood Cooking Drips Using Various Detection Methods (수산 자숙액의 방사선 조사 여부 판별 특성 연구)

  • Choi, Jong-Il;Kim, Yeon-Joo;Kim, Jae-Hun;Lee, Ju-Woon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1569-1574
    • /
    • 2011
  • In this study, the identification of the irradiated seafood cooking drips from Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus was conducted. The physical detection methods used included photo-stimulated luminescence (PSL) and thermoluminescence (TL), and the chemical detection methods were hydrocarbons analysis. In the PSL study, all seafood cooking drip samples showed 260~510 photon counts; thus, the PSL method could not be used for the detection of irradiated seafood cooking drips. The TL method could be used for the detection of irradiated H. fusiformis and E. dofleini cooking drips. In both cooking drips, the shapes of the glow curves indicated a specific peak at 150$^{\circ}C$~250$^{\circ}C$, which made it possible to identify the irradiated samples. The hydrocarbons derived by gamma irradiation of T. thynnus cooking drip were not detected due to low concentration and inconsistent content of fatty acids in the untreated T. thynnus cooking drip.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Identification of Gamma Irradiation of Imported Spice

  • Choi, In-Duck;Kim, Byeong-Keun;Song, Hyun-Pa;Byun, Myung-Woo;Han, Sang-Bae;Suh, Chung-Sik;Kim, Dong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.317-323
    • /
    • 2004
  • Photostimulated Luminescence (PSL), Electron Spin Resonance (ESR) and Thermoluminescence (TL) analysis were conducted to detect irradiation treatment of imported whole and ground spices. The screening by PSL detected no irradiation treatment, except un the ground thyme and bay leaves which exhibited photon counts in the intermediate level. Irradiation of the two spices was detected after irradiating them at 1.0, 3.0, 5.0 and 10.0 kGy, and then subjecting them to PSL analysis, which resulted in the significantly low photons of non-irradiated spices compared to that at 1.0 kGy, indicating that the photon counts varied depending on the amount of inorganic mineral debris in the spices. To confirm a successful detection by using PSL, ESR and TL methods, some spices were selected, irradiated at 5.0 and 10.0 kGy, and subjected to the detection methods. PSL identified the irradiated spices except the cassia, which showed very weak PSL sensitivity, but was identified by ESR analysis. Also, the ESR and TL exhibited the typical signals induced by irradiation treatment and were able to successfully detect all of the irradiated spices. In addition, we found a positive correlation between the intensity of ESR and TL signals and irradiation doses.

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.