• Title/Summary/Keyword: Gametogenesis

Search Result 83, Processing Time 0.037 seconds

Epigenetic Reprogramming in Cloned Embryos

  • Kang, Yong-Kook;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.25-31
    • /
    • 2001
  • During early development, a dramatic reduction in methylation levels occurs in mouse (Monk et al., 1987). The process of epigenetic reprogramming in early embryos erases gamete-specific methylation patterns inherited from the parents (Howlett & Reik 1991, Monk et al., 1987, Oswald et al., 2000, Sanford et al., 1984). This genome-wide demethylation process may be a prerequisite for the formation of pluripotent stem cells that are important for the later development (Reik & Surani 1997). During post-implantation development, a wave of de novo methylation takes place; most of the genomic DNA is methylated at defined developmental timepoints, whereas tissue-specific genes undergo demethylation in their tissues of expression (Kafri et al., 1992, Razin & Kafri 1994). Another demethylation-remethylation cycle of epigenetic reprogramming takes place during gametogenesis and is necessary for resetting of genomic imprinting (Solter 1988). The dynamic epigenetic reprogramming events appear to be basic and are probably conserved in eutherian mammals (see below). (omitted)

  • PDF

Sexual Reproduction in Unicellular Green Alga Chlamydomonas (수염녹두말속(Chlamydomonas) 단세포 녹조의 유성생식)

  • Lee, Kyu Bae
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.100-121
    • /
    • 2017
  • The sexual reproduction of the unicellular green alga Chlamydomonas is reviewed for a comprehensive understanding of the complex processes. The sexual life cycle of C. reinhardtii is distinguished into five main stages: gametogenesis, gamete activation, cell fusion, zygote maturation, and meiosis and germination. Gametogenesis is induced by nitrogen starvation in the environment. C. reinhardtii has two mating types: mating type plus ($mt^+$) and mating type minus ($mt^-$), controlled by a single complex mating type locus ($MT^+$ or $MT^-$) on linkage group VI. In the early gametogenesis agglutinins are synthesized. The $mt^+$ and $mt^-$ agglutinins are encoded by the autosomal genes SAG1 (Sexual AGglutination1) and SAD1 (Sexual ADhesion1), respectively. The agglutinins are responsible for the flagellar adhesion of the two mating type of gametes. The flagellar adhesion initiates a cAMP mediated signal transduction pathways and activates the flagellar tips. In response to the cAMP signal, mating structures between two flagella are activated. The $mt^+$ and $mt^-$ gamete-specific fusion proteins, Fus1 and Hap2/Gcs1, are present on the plasma membrane of the two mating structures. Contact of the two mating structures leads to develop a fertilization tubule forming a cytoplasmic bridge between the two gametes. Upon fusion of nuclei and chloroplasts of $mt^+$ and $mt^-$ cells, the zygotes become zygospores. It is notable that the young zygote shows uniparental inheritance of chloroplast DNA from the $mt^+$ parent and mitochondrial DNA from the $mt^-$ parent. Under the favorable conditions, the zygospores divide meiotically and germinate and then new haploid progenies, vegetative cells, are released.

Gonadal Development and Reproductive Cycle of Red Sea Urchin Pseudocentrotus depressus (분홍성게(Pseudocentrotus depressus)의 생식소 발달과 생식주기)

  • Kim, Jae-Woo;Lee, Chi-Hoon;Lee, Young-Don;Chung, Sang-Chul
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.225-231
    • /
    • 2010
  • Gonadal development and reproductive cycles of red sea urchin Pseudocentrotus depressus were investigated based on the monthly variations of gonadosomatic index (GSI), gametogenesis and developmental phases of gonad. The specimens were sampled monthly in the north coastal waters of Ongpo and the south coastal waters Bubhwan of Jeju Island, Korea, from December 1994 to December 1995. Monthly changes of GSI values and reproductive cycles showed similar trends in Ongpo and Bubhwan. In females GSI values were reached the maximum in December ($17.8{\pm}4.04$ in Ongpo, $13.8{\pm}1.51$ in Bubhwan). In males GSI values were reached the maximum in December ($15.4{\pm}1.53$ in Ongpo, $13.6{\pm}1.32$ in Bubhwan). In both Ongpo and Bubhwan major spawning probably occurred between November and February when water temperatures and daylengths decrease. The histological observations of the gonads suggested that this species seemed to have a synchronous gametogenesis and one spawning season a year in Jeju Island costal waters.

Studios on the Pen Shell Culture Development (I) -Reproductive Ecology of Pen Shell in Yoja Bay- (키조개의 양식개발에 관한 연구(I) -여계만산 키조개의 번식생태-)

  • Yoo Sung Kyoo;Yoo Myong-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.529-535
    • /
    • 1984
  • This study aims at obtaining the basic data for the development of pen shell culture at Yoja Bay, the southwest coast of Korea. The authors dealt with the annual gonadal changes of the pen shell, Atrina pectinata japonica, to find out the gametogenesis, reproductive cycle and spawning season, and to investigate the fluctuation in the larval occurence in Yoja Bay. From July 1983 to June 1984, an average of 20 individuals as specimens were monthly collected by commercial fishing dredge near Manwol island located at the mouth of Yoja Bay. The degree of gonadal development was determined by the histological observations as resting spent stage, early developmental stage, after developmental stage, early spawning stage, after spawning stage and degenerative stage. According to these degrees of gonadal development, annual reproductive cycle of the pen shell population was determined. From July to August, the gonads were changed through degenerative into resting stage and, in September and October, they became entirely empty gonads. From November they showed the first sign of gametogenesis developing very slowly. Nevertheless, the developing gametes did not increase in number probably owing to a phagocytic phenomenon by phagocytes which appeared in the gonad during this stage. Some individuals started spawning in April and in May majarity of individuals were in spawning stage. In June, majority of the individuals showed signs of degenerative stage. Therefore, the authors came to a conclusion that the pen shells in Yoja Bay spawn chiefly in May. And this is also supported by the result of the survey on the planktonic occurrences of the pen shell larvae. Namely, there were no larvae at all in April, only a few in May and many in June by vertical water sampling.

  • PDF

Identification of a Novel Gene by EST Clustering and its Expression in Mouse Ovary and Testis (EST Clustering 방법으로 동정한 새로운 유전자의 생쥐 난소 및 정소에서의 발현)

  • Hwang, Sang-Joon;Park, Chang-Eun;Hwang, Kyu-Chan;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.4
    • /
    • pp.253-263
    • /
    • 2006
  • Objective: Identification of the regulatory mechanism for arrest and initiation of primordial follicular growth is crucial for female fertility. Previously, we found 15 expressed sequence tags (ESTs) that were specifically abundant in the day-S-subtracted cDNA library and that the B357 clone was novel. The present study was conducted to obtain the whole sequence of the novel gene including B357 and to characterize its mRNA and protein expression in mouse ovary and testis. Methods: The extended sequence of the 2,965-bp cDNA fragment for the clone B357 was named ${\underline{5}}-{\underline{d}}ay-{\underline{o}}vary-{\underline{s}}pecific\;gene-{\underline{1}}$ (5DOS1) and submitted to GenBank (accession number ${\underline{AY751521}}$). Expression of 5DOS1 was characterized in both female and male gonads at various developmental stages by Northern blotting, real-time RT-PCR, in situ hybridization, Western blotting, and immunohistochemistry. Results: The 5DOS1 transcript was highly expressed in the adult testis, brain, and muscle as compared to the other tissues. In the ovary, the 5DOS1 transcript was detected in all oocytes from primordial to antral follicles, and highly expressed at day 5 after birth and decreased thereafter. In contrast, expression of 5DOS1 showed a gradual increase during testicular development and its expression was limited to various stages of male germ cells except spermatogonia. Conclusions: This is the first report on the expression and characterization of the 5DOS1 gene in the mouse gonads. Further functional analysis of the 5DOS1 protein will be required to predict its role in gametogenesis.

Reproduction and Population Dynamics of Marbled Sole Limanda yokohamae 3. Reproduction (문치가자미, Limanda yokohamae의 생식기구 및 개체군 동태 1. 생식기구)

  • LEE Taek Yuil;KANG Yong Joo;LEE Byung Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.253-261
    • /
    • 1985
  • The reproduction of marbled sole Limanda yokohamae, caught near around the southeastern coast of Korea, from December 1983 to November 1984, was investigated based on such annual variations as gonadosomatic index(GSL), gametogenesis, reproductive cycle, spawning number, hepatosomatic index (HSI), and fatness. GSI began to increase in the autumn season with the onset of shorter day length and colder water temperature, and reached the maximum value in December with the shortest day length and the lowest temperature over the year. The gonad activated the proliferation of oogonia and spermatogonia in June, reached the mature stage in October, ripe in December, and spawning from the end of December to January. After spawning, it showed the resting stage which gonad remained regressive and suppressive from February to May. In addition, the adult individuals observed discharged eggs only once during their spawning period. At yolk globular stage, the substance of vitellogenin synthesized from the liver was considered to participate in the active yolk accumulation of oocytes. Marbled sole was concluded to be a typical winter spawning species in that such environmental factors as short day length and low water temperature were closely related with the gametogenesis, the stimulation of oocyte maturation, and were also affecting the ovulation.

  • PDF

Gonadal Development and Reproductive Cycle of the Top Shell, Omphalius rusticus(Gastropoda: Trochidae)

  • Lee, Ju Ha
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • Gonadal development, reproductive cycle, gonad index, meat weight rate, and first sexual maturity of the top shell, Omphalius rusticus were Investigated monthly by histological observations. Specimens were collected from the west coast of Korea during the period from January to December in 1999. O. rusticus is dioecious and oviparous. The gonad is widely situated on the surface of the digestive g1and located in the posterior spiral meat part in the shell. The ovary and the testis were composed of a number of oogenic follicles and several spermatogenic follicles, respectively. Ripe oocytes were approximately 120-130 $\mu$m in diameter. The meat weight rate peaked in June (27.7%), and then rapidly decreased in September (19.5%). Monthly changes in the gonad index in both sexes reached the maximum in June, and then sharply decreased in September. Percentages of first sexual maturity of female and male snails ranging from 9.0 to 9.9 mm in shell heights were 58.3% and 54.5%, respectively, and 100% in those over 11.0 mm in both sexes participated in reproduction. Reproductive cycle of this species can be categorized into five successive stages: in females, early active (October to April), late active (December to June), ripe (April to September), spawning (July to September) and recovery (September to January): in males, early active (November to March), late active (December to June), ripe (April to September), spawning (July to September) and recovery (September to December). Gonadal development, gametogenesis, reproductive cycle, and spawning were closely related to the seawater temperature.

  • PDF

Gonadal Development and Reproductive Cycle of Sea Hare Aplysia kurodai in Jeju Coastal Waters

  • Lee, Chi-Hoon;Kaang, Bong-Kiun;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • Gonadal development and reproductive cycle of Aplysia kurodai inhabiting the coastal waters of Jeju Island, Korea were investigated based on monthly changes of gonadosomatic index, gametogenesis, and developmental phases of ovotestis. A. kurodai was simultaneous hermaphrodite; the ovotestis generally embedded in the posterior dorsal surface of the brownish digestive gland. The ovotestis is composed of a large number of follicles, and both oocytes and sperm are produced in the same follicles. In the sampling periods, the adult A. kurodai population have characteristic of seasonal pattern present during only 10 months. The reproductive cycle can be grouped into the following successive stages in the ovary: inactive (December to February), active (December to April), mature and spawning (April to September). The gonadal development of A. kurodai coincided with rising temperature, and spawning occurred from April to September, when the temperature was high. The histological observations of the ovotestis suggested that this species have a single spawning season that extend over six months.

Impact of glycosylation on the unimpaired functions of the sperm

  • Cheon, Yong-Pil;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.3
    • /
    • pp.77-85
    • /
    • 2015
  • One of the key factors of early development is the specification of competence between the oocyte and the sperm, which occurs during gametogenesis. However, the starting point, growth, and maturation for acquiring competence during spermatogenesis and oogenesis in mammals are very different. Spermatogenesis includes spermiogenesis, but such a metamorphosis is not observed during oogenesis. Glycosylation, a ubiquitous modification, is a preliminary requisite for distribution of the structural and functional components of spermatids for metamorphosis. In addition, glycosylation using epididymal or female genital secretory glycans is an important process for the sperm maturation, the acquisition of the potential for fertilization, and the acceleration of early embryo development. However, nonemzymatic unexpected covalent bonding of a carbohydrate and malglycosylation can result in falling fertility rates as shown in the diabetic male. So far, glycosylation during spermatogenesis and the dynamics of the plasma membrane in the process of capacitation and fertilization have been evaluated, and a powerful role of glycosylation in spermatogenesis and early development is also suggested by structural bioinformatics, functional genomics, and functional proteomics. Further understanding of glycosylation is needed to provide a better understanding of fertilization and embryo development and for the development of new diagnostic and therapeutic tools for infertility.

Variation in Physiological Energetics of the Ark Shell Scapharca broughtonii (Bivalvia: Arcidae) from Gamak Bay, South Coast of Korea

  • Shin, Yun-Kyung;Choi, Yoon-Seok;Kim, Eung-Oh;Sohn, Sang-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-338
    • /
    • 2009
  • This study presents physiological rates of respiration and excretion, clearance rate, and assimilation efficiency of the ark shell Scapharca broughtonii, determined during 2007 from specimens collected in Gamak Bay on the south coast of Korea. Physiological parameters were measured monthly under static, laboratory controlled conditions with ambient conditions, and measurements were performed seasonally in order to estimate scope for growth and its probable sources of variation. Temperature directly influenced respiration and excretion. Clearance rates showed a tendency to be low during May-August, which is a period of gametogenesis. Assimilation efficiency was not significantly different seasonally and was independent of the concentration of chlorophyll a. The scope for growth was negative during high-temperature months (July-August), reflecting the high temperature and low clearance rate, and had its highest positive values during spring and autumn. The energy budget or growth potential of bivalves has been applied to other economically important species. Data on the physiological parameters and scope for growth of S. broughtonii obtained in this study will be used to assess the carrying capacity for ark shell cultivation.