• Title/Summary/Keyword: Galvanizing

Search Result 130, Processing Time 0.021 seconds

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

A Study on the Characteristic of Anti-corrosive Performance for the Cable Members (케이블 부재의 방청성능 특성에 관한 연구)

  • Ahn, Seung-Whan;Han, Sang-Eul;Lee, Sang-Ju
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.66-72
    • /
    • 2006
  • Recently nonlinear materials are used in construction of building and bridge then various structure formats are achieved positively. one of them, cable members, are the interesting study object which increase rigidity of a total structure by inducing tension. The way of construction using cable members is increasing, so the technology of design and construction are developing. Protection Fretting Fatigue is very important to maintain efficiency of cable member permanently. However, recognition of this is somewhat humble and this paper considers anti-corrosive performance of cable.

  • PDF

Recent Progress in New Functional Coating Technology (신기능성 표면처리강판 제조기술의 최근 진보)

  • Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.37-37
    • /
    • 2012
  • The coated steels, mainly with zinc by either hot-dip galvanizing or electroplating, are widely used for panels of automotive, electrical appliances and construction, whose size of world market have reached 130 million tons in 2008. Current issues for the coated steels can be integrated in terms of high functionality, low cost, environment-friend and available resource. The best solution can be provided if thin layer coating with higher quality is produced by an eco-friendly process, and PVD, physical vapor deposition, can be an alternative practice to existing coating processes. PVD technologies have been very common ones in electronic and semiconductor industries, but recognized as non-profitable processes for the coated steels due to low process speed and lack of continuous operation skills. Systematic researches from 1990s in Europe, even though discouraged by a shutdown of the first Japanese PVD coating plant in 1999, have realized several continuous PVD coating plants, and also enhanced launching of developments in steel industries. To be successful with PVD coating technologies over existing ones, productivity to meet economics should be created from a highly sophisticated process. Some PVD technologies fit for the high-speed process will be introduced together with experiences from industrial applications.

  • PDF

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating (소성인장변형 몇 아연도금된 Fe-Mn-C계 TWIP 강의 전기화학적 수소투과거동)

  • Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.297-303
    • /
    • 2023
  • This study aimed to evaluate hydrogen permeation behaviors of pre-strained twinning-induced plasticity steel with or without Zn coating using electrochemical permeation technique. In contrast to un-strained and 30% strained samples, permeation current density was measured in the 60% strained sample. Tensile pre-straining at 60% involved microstructural modifications, including a high level of dislocation density and stacking fault with a semi-coherent twin boundary, which might provide a high diffusion path for hydrogen atoms. However, reproducibility of measurements of hydrogen permeation current was low due to non-uniform deformation and localized stress concentration. On the other hand, the permeation current was not measured in pre-strained TWIP steel with Zn coating. Instead, numerous blisters with some cracks were observed on the surface of the coating layer. In locally damaged Zn coating under tensile straining, hydrogen atoms could relatively easily permeate through the coating layer. However, they were trapped at the interface between the coating layer and the substrate, which might delay hydrogen penetration into the steel substrate.

Preliminary Hazard Analysis of Vehicle with G-SAVE Technology (G-SAVE 공법 탑재 차량의 예비위험성평가)

  • Ui Pil Chong;Hyun Chul Park;Young Soo Park;Byung Chul Ahn;Deok Soo Han;Hyeon Jun Jeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.283-287
    • /
    • 2023
  • The structures for road safety are guard rails that protect the cars and passengers. If an accident occurs on the roads after a long period of installation, it may escalate into a major disaster. In order to repair many guard rails, the existing repair method of replacing them with new ones requires enormous financial resources. To solve this problem, the G-SAVE method was developed to repair the guard rail without replacing them. This method removes the rust on the surface of the guard rail and then performs ambient-dip galvanizing coating on it without replacing the new ones. No studies or reports have yet been made on the risk assessment of harmful substances, vehicles for these entire processes. Therefore, this paper focuses on risk assessment using the PHA (Preliminary Hazard Analysis) technique and conducts risk assessment for concept design stage of the coating vehicles.

Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits (Zn-Ni도금의 합금화에 미치는 전류밀도, 온도와 전해액농도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.307-312
    • /
    • 2017
  • In the industry, galvanizing using the principle of sacrificial anode is used Zn-Ni alloy plating was developed as one of the measures to increase the corrosion resistance rather than pure zinc plating. The alloy plating layer has a corrosion resistance of 4-5 times that of the pure zinc plating layer, so that it is applied to automotive parts requiring high corrosion resistance even though the plating cost is high. The amount of Zn-Ni alloy plating solution is a sulfuric acid bath, a chlorinated bath, an alkali bath, and an ammonia bath. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage and the diffusion coefficient. In general, as the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. The concentration polarization is determined by element diffusion in the diffusion layer. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System (Zn-Sn 합금을 이용한 강구조물의 금속용사공법 방식성능평가 연구)

  • Ryu, Hwa-Sung;Jeong, Dong-Geun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.505-513
    • /
    • 2014
  • The purpose of this study is to evaluate the corrosion protective properties of a Zn-Sn metal spray method according to the contents of Zn and Sn by a CASS test and the electrochemical theory. In the experiment, the CASS test and the electrochemical test were conducted to investigate the corrosion protective property of the Zn-Sn Metal Spray system, the Zinc galvanizing system, and the heavy duty coating system. As a result, it was confirmed that the Zn-Sn (65:35) Metal Spray system had very high corrosion protective property through the electrochemical characteristic as comparison with the other anti-corrosion systems and was very effective to prevent steel products from corrosion.

Electrodeposition of Zn-Mn Alloys on Steel from acidic chloride bath (염산욕에서 제조된 강판표면의 Zn-Mn 합금에 대한 연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.271-276
    • /
    • 2018
  • In the industry, Zn galvanizing on the steel using the principle of sacrificial anode is used. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn-Mn alloy plating has been studied as one of the measures to increase the corrosion resistance rather than pure zinc plating. It is possible to be applied to automotive parts requiring high corrosion resistance even though the plating cost is high. In this study, Zn-Mn alloys were electrodeposited from an acidic chloride bath. The influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. As the current density of the cathode increases, Zn content of electrodeposit decrease and Mn content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Mn content of electrodeposit increase. The results are explained by the cathode overvoltage curve of Mn and Zn.