• Title/Summary/Keyword: Galvanic corrosion

Search Result 194, Processing Time 0.03 seconds

Corrosion Behavior of Bimetal Materials (Fe-Ni / Fe-Ni-Mo) for Electromagnetic Switches (전자 개폐기용 바이메탈 소재(Fe-Ni / Fe-Ni-Mo)의 부식거동)

  • Yu-Jeong An;Eun-Hye Hwang;Jae-Yeol Jeon;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.478-483
    • /
    • 2023
  • This study examined the corrosion behavior of bimetal materials composed of Fe-Ni alloy and Fe-Ni-Mo alloy, both suitable for use in electromagnetic switches. Electrochemical polarization and weight loss measurements revealed that, in contrast to Fe-Ni alloy, which exhibited pseudo-passivity behavior, Fe-Ni-Mo alloy had higher anodic current density, displaying only active dissolution and greater weight loss. This indicated a lower corrosion resistance in the Fe-Ni-Mo alloy. Equilibrium calculations for the phase fraction of precipitates suggested that the addition of 1 wt% Mo may lead to the formation of second-phase precipitates, such as Laves and M6C, in the γ matrix. These precipitates might degrade the homogeneity of the passive film formed on the surface, leading to localized attacks during the corrosion process. Therefore, considering the differences in corrosion kinetics between these bimetal materials, the early degradation caused by galvanic corrosion should be prevented by designing a new alloy, optimizing heat treatment, or implementing periodic in-service maintenance.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

Materials Characterization and the Microstructure of Pure Cu and Cu-3vol%CNT Composite Fabricated From Optimization of SPS Processing Variables (SPS 공정 변수의 최적화에 의한 Pure Cu와 Cu-3vol%CNT composite의 미세구조와 소재특성)

  • Lee, Hee Chang;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • In this study, materials characterization of pure copper and copper based carbon nano-tube composite prepared by powder metallurgy method were investigated. Prior to evaluate materials characterization, spark plasma sintering processing variables such as sintering temperature, pressure, thickness and diameter of compacts was optimized to ensure the microstructure and materials property of pure Cu and Cu-CNT composite. In addition, corrosion behavior of Cu-based CNT composite produced by powder sintering method was investigated. It was confirmed from this study that the corroded surfaces of the composite shows less dissolution compared with pure copper in 3.5 wt% NaCl solution. The measured corrosion current density (Icorr) indicates improved corrosion property of Cu based composite containing small additions of CNTs in chloride containing media. Micro-galvanic activity between Cu and CNT was not observed in given sintering condition.

Material characteristic of ACSR due to eccentricity at sleeve point (ACSR 슬리브 개소에서의 송전선 재료특성 검토)

  • Kang, J.W.;Hong, D.S.;Jang, T.I.;Yoon, H.H.;Lee, D.I.;Choi, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.309-310
    • /
    • 2006
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines has become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. This paper deals with material characteristic of ACSR due to eccentricity at sleeve point. Test samples are ACSR 240[$mm^2$] conductors, which are real transmission lines. As a result, it is obvious that ACSR due to eccentricity may lead to mechanical deterioration.

  • PDF

Tensile Characteristics of ACSR Overhead Lines located in seaside (해안지역 ACSR 가공지선의 기계적 특성)

  • Jang, T.I.;Kang, J.W.;Lee, D.I.;Jang, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1709-1711
    • /
    • 2001
  • The remaining life of ACSR(Aluminum Conductor Steel Reinforced) wires exposed to the atmosphere for a long period relies on the extent of deterioration caused by environmental factors such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. We investigated the tensile characteristics of ACSR wires in a coastal area through several mechanical tests, and analyzed the constituents of them using SEM(scanning electron microscope). Test samples are parts of ACSR 97[$mm^2$] overhead transmission lines in that area. The result shows that ACSR wires exposed to salt may lead to rapid mechanical deterioration.

  • PDF

Mechanical characteristic of overhead transmission lines by forest fires (화염에 노출된 가공송전선의 기계적.재료적 특성 검토)

  • Kang, J.W.;Jang, T.I.;Kim, B.K.;Park, C.G.;Bang, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.339-341
    • /
    • 2002
  • The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires. This paper deals with investigation of strength deterioration performance of ACSR due to fires through several testing and analyzing data for both tension load and material analysis. Test samples are ACSR $480[mm^2]$ conductors, which are artificially fired to regular durations. As a result, it can be verified that tension load of ACSR are reduced by increasing fro duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques (마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성)

  • Kim, Kyu-Seop;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

Functional Surface Coating Technologies of Steel Industry

  • Choi, Chang-Hoon;Park, Sung-Ho;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.270-275
    • /
    • 2010
  • Technical issues of steel industry change along with other industrial progresses. Traditionally, steel protection from corrosion environment was the major issue and galvanic metal coatings were mainly used to extend the lifetime of steel products. Nowadays, requirements for steel have become more diversified. More various surface and material properties are required from different field of applications. Naturally, functional surface coating has become one of the most studied areas in steel industry. For functional surface coating, various process technologies and coating products are investigated. In this article, recent trends of functional coating technologies and products are introduced with brief technical descriptions of representative coating products.

Corrosion Behavior of AZ31 Magnesium Alloy during Machining (AZ31 마그네슘 합금의 절삭가공과정에서의 부식거동)

  • Kim, Jae-Hak;Kwon, Sung-Eun;Lee, Seung-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.315-321
    • /
    • 2012
  • In the study, corrosion characteristics of AZ31 magnesium alloy under various environments exposed during machining(immersion in cutting oil, 5 % cutting oil aqueous solution and distilled water & contact with dissimilar metals, SPC4 and A5052-H32) were investigated. A corrosion test was performed AZ31 magnesium alloy was immersed in each electrolyte solution after contacting with each dissimilar metals, and the results were observed by an electron microscope. In immersion tests, corrosion of AZ31 magnesium alloy showed to be in the sequence of distilled water> 5 % cutting oil aqueous solution> cutting oil> air, and in the test of contact with dissimilar metals, corrosion showed to be in the sequence of SPC4> A5052-H32> AZ31. It can be concluded that to prevent corrosion during machining, AZ31 magnesium alloy must prevent contacting water and use magnesium alloy for raw material of Jig & Fixture.

Study on the Characteristics of Corrosion for Epoxy Coated Steel Structure (에폭시도막 강구조물의 부식특성에 관한 연구)

  • Lim, U-Jo;Cheun, Jeong-Hyun;Jeong, Gi-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • Recently, with the rapid development in the industries such as mechanical plants, automobiles, ships and marine structures, it is enlarged by the use of the SS 41 steel. This mechanical plants and marine structures are exposed m corrosion because of Cl-under marine environments. To protect their accidents, mainly applied anti-corrosion epoxy coating and various protective its structures. In this study, corrosion control characteristics on the epoxy coating were investigated by the galvanic corrosion of impressed voltage tester under marine environments The main results obtained are as follows; 1. Corrosion current density of amine-epoxy coating becomes more increased than that of other epoxy coating and the time area rate of pin hole and pit until 5% becomes most rapid. 2. The potential of SUS 304 stainless steel(cathode) for Al-epoxy coating is nearly zero potential. 3. Corrosion current density of Amine-epoxy by shot blast becomes more decreased than that of not shot blast and cathodic potential becomes more noble. 4. As distance of anode and cathode is more decreased, corrosion current density of epoxy coating is more increased and cathodic potential becomes less noble.

  • PDF