• Title/Summary/Keyword: Galvanic

Search Result 350, Processing Time 0.026 seconds

Study on Characterization of Galvanic Oxygen Sensor (갈바니식 산소센서의 특성에 관한 연구)

  • Cho, Dong-Hoe;Park, Myon-Yong;Lee, Byoung-Cho;Chung, Koo-Chun;Park, Jongman;Lee, Kyeong-Jae;Chung, Sung-Sook;Park, Sun-Young;Lee, Kwang-Woo
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.371-378
    • /
    • 1994
  • The detection range of this galvanic oxygen sensor for oxygen concentration was 0.0% to 20.0%. By using gold or silver as cathode, reproducible response time and sensitivity to change of oxygen concentration were observed. The anode was Pb-Sn-Ca alloy. Oxygen selective permeable membrane was hydrophobic and porous Teflon film. The effect of the membranes varying in thickness have been studied on the temperature($10{\sim}50^{\circ}C$) and relative humidity(R. H 0~99%). Lead acetate buffer solution as the electrolyte has shown a high output voltage and longer life.

  • PDF

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

A STUDY OF INTERFACE AND CORROSION BEHAVIOR BETWEEN IMPLANT ABUTMENT AND CASTING GOLD ALLOY (임플랜트 지대주와 주조 금합금과의 접합 및 부식에 관한 연구)

  • Son, Mee-Kyoung;Ma, Jang-Seon;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.672-686
    • /
    • 1999
  • The purpose of this study was to compare the casting problem and corrosion behavior in two types of HL Hexed abutments of the Steri-Oss system ; gold/plastic coping and gold coping. The anodic Polarization behavior, the galvanic corrosion between abutments and Type III gold alloys, before and after casting were analyzed, and the crevice corrosion of casting samples was analyzed with the CPPT test and the SEM. The results are as follows : 1. Anodic polarization behavior of samples ; Before casting, gold/plastic coping and gold coping was shown to have a similar corrosion pat-terns. Type III casting gold alloy was shown to have a lower corrosion potential and passivation film. Corrosion potential of the case of gold/plastic coping after casting was higher than that of gold coping, but the region of passivation film for gold/plastic coping was smaller than that of gold coping. 2. Galvanic corrosion behavior of samples ; Contact current density between casting gold alloys and gold/plastic before casting was higher than that between gold coping and casting gold alloy Galvanic corrosion of samples after casting was shown to have similar contact current density 3. Crevice corrosion behavior of samples ; Crevice corrosion resistance of casting sample using gold coping was lower than that of cast-ing sample using gold/plastic coping, and a severe corrosion pattern was observed at the abutment-casting gold alloy interface by the SEM.

  • PDF

Effects of Microcurrent and High Voltage Pulsed Galvanic Current Stimulation on Fibular Fracture Healing of the Rabbits (미세전류자극과 고전압 맥동직류 통전이 토끼의 비골 골절치유에 미치는 효과)

  • Ko, Seung-Hyun;Yoon, Bum-Chul;Kim, Ji-Sung;Min, Kyung-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.286-292
    • /
    • 2011
  • This study investigated the degree of fracture healing using cathode stimulation of microcurrent, cathode and anode stimulation of High Voltage Pulsed Galvanic Current (HVPGC). Measures were performed by X-ray test and Hematoxylin-Eosin stain and Masson's trichrome stain and osteocalcin-positive immunoreactivity. In the measure of X-ray, microcurrent stimulation group revealed more rapid recovery than the groups of HVPGC's cathode and anode stimulation in bone union degrees. Microcurrent group showed significant difference statistically (p<0.05). However, the groups of HVPGC's cathode and anode stimulation didn't show significant difference statistically(p>0.05). In the histologic examination with Hematoxylin-Eosin and Masson's trichrome, microcurrent stimulation group was observed more proliferation of irregular woven bones than the groups of HVPGC's cathode and anode stimulation. Osteocalcin-positive immunoreactivity was observed more osteoblast, osteocyte, osteoclast, bone matrix than the groups of HVPGC's cathode and anode stimulation. Microcurrent stimulation can be considered an effective way during healing of fresh fracture and it can show more effective method than HVPGC's cathode and anode stimulation in the fracture healing.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Impact of Picture and Reading Mode on Cognitive Load and Galvanic Skin Response (그림 자료의 제시여부와 읽기모드에 따른 인지부하와 GSR의 차이)

  • Ryu, Jee-Heon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • This study investigated the effects of contiguity and reading mode on cognitive load factors measured by Galvanic Skin Response(GSR). In this study two experimental conditions were imposed to participants to measure cognitive load with the high contiguity picture and low contiguity picture. Thirty-four college students participated to this experiment(experiment group=17, control group=17), and spilt-plot factorial design was applied to control individual difference in galvanic skin response. Tasks of this experiment were reading and summary. The dependent variables were skin conductance response, and perceived difficulty. The independent variables were the degree of contiguity of visual material(high contiguity vs. low contiguity). The major result of this study was identification of a significant difference of GSR with low contiguity condition. Indeed it was identified that more complex reading condition required more cognitive loads. This finding supported that different cognitive process might require different amounts of cognitive loads. For the further research, this study discussed the validity of applying physiological signals to assess cognitive loads and relationships the associated affective reactions.

  • PDF

AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT (Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구)

  • Yang, Sang-Duk;Suhr, Cheng Hoon
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

Galvanic Anode Charactristics of Grounding Cell Design for Corrosion Protection of Pipings (배관 방식용 접지전지 설계를 위한 유전양극의 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1983
  • The galvanic anodes have three kinds of Zn alloy anode, Al alloy anode and Mg alloy anode, which are widely used in cathodic protection for all metal structures in water or under ground. This paper to be used for designing of the grounding cell has reached the following conclusion as the results of an experimental study on the characteristics of such galvanic anodes for corrosion protection of pipings: 1) Zn alloy anode was the best when the specific resistance of the environment was bellow 1000 $\Omega$.cm, and when above 1000 $\Omega$.cm, Mg alloy anode to be used for designing of the grounding cell was the best. 2) Al alloy anode was better than Mg alloy anode for grounding cell when the specific resistance was bellow 500 $\Omega$.cm, but the Al alloy anode in all the environments reduced the characteristics of galvanic anode to the lower grade than those of Zn alloy anode. 3) Each impressed voltage (E) of the anodes at which drainage current density ($\rho$) begins rapidly increasing is quantitatively presented as follows: \circled1 E sub(Zn)=log (4.9465/$\rho$super(0.0639))+11$\times$10 super(-6)$\rho$super(0.8923i) \circled2 E sub(Al)=log (4.9306/$\rho$super(0.0525))+13$\times$10 super(-6)$\rho$super(0.9314i) \circled3 E sub(Mg)= log (3.7086/$\rho$super(0.0988))+181$\times$10 super(-6)$\rho$super(0.5406i) 4) The empirical equations between the drainage current density (i) and impressed environment are modeled as the following type. logi=g+root(n.E+r)(g,n,r; constants)

  • PDF