• 제목/요약/키워드: Galois

검색결과 199건 처리시간 0.022초

GALOIS STRUCTURES OF DEFINING FIELDS OF FAMILIES OF ELLIPTIC CURVES WITH CYCLIC TORSION

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제27권2호
    • /
    • pp.205-210
    • /
    • 2014
  • The author with C. H. Kim and Y. Lee constructed infinite families of elliptic curves over cubic number fields K with prescribed torsion groups which occur infinitely often. In this paper, we examine the Galois structures of such cubic number fields K for the families of elliptic curves with cyclic torsion.

ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • 제38권1호
    • /
    • pp.85-93
    • /
    • 2016
  • Let A be an abelian variety defined over a number field K and let L be a degree 3 non-Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming that III(A/L) is finite, we compute [III(A/K)][III($A_{\varphi}/K$)]/[III(A/L)], where [X] is the order of a finite abelian group X.

THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.537-544
    • /
    • 2018
  • There is a standard construction of lifting cyclic codes over the prime finite field ${\mathbb{Z}}_p$ to the rings ${\mathbb{Z}}_{p^e}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields ${\mathbb{F}}_{p^r}$ to codes over Galois rings GR($p^e$, r). We give concrete examples with all of the lifts.

CYCLIC CODES OVER THE RING OF 4-ADIC INTEGERS OF LENGTHS 15, 17 AND 19

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • 제27권3호
    • /
    • pp.767-777
    • /
    • 2019
  • We present a new way of obtaining the complete factorization of $X^n-1$ for n = 15, 17, 19 over the 4-adic ring ${\mathcal{O}}_4[X]$ of integers and thus over the Galois rings $GR(2^e,2)$. As a result, we determine all cyclic codes of lengths 15, 17 and 19 over those rings. This extends our previous work on such cyclic codes of odd lengths less than 15.

A Cryptographic Processor Supporting ARIA/AES-based GCM Authenticated Encryption (ARIA/AES 기반 GCM 인증암호를 지원하는 암호 프로세서)

  • Sung, Byung-Yoon;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • 제22권2호
    • /
    • pp.233-241
    • /
    • 2018
  • This paper describes a lightweight implementation of a cryptographic processor supporting GCM (Galois/Counter Mode) authenticated encryption (AE) that is based on the two block cipher algorithms of ARIA and AES. It also provides five modes of operation (ECB, CBC, OFB, CFB, CTR) for confidentiality as well as the key lengths of 128-bit and 256-bit. The ARIA and AES are integrated into a single hardware structure, which is based on their algorithm characteristics, and a $128{\times}12-b$ partially parallel GF (Galois field) multiplier is adopted to efficiently perform concurrent processing of CTR encryption and GHASH operation to achieve overall performance optimization. The hardware operation of the ARIA/AES-GCM AE processor was verified by FPGA implementation, and it occupied 60,800 gate equivalents (GEs) with a 180 nm CMOS cell library. The estimated throughput with the maximum clock frequency of 95 MHz are 1,105 Mbps and 810 Mbps in AES mode, 935 Mbps and 715 Mbps in ARIA mode, and 138~184 Mbps in GCM AE mode according to the key length.

New Fast and Cost effective Chien Search Machine Design Using Galois Subfield Transformation (갈로이스 부분장 변환을 이용한 새로운 고속의 경제적 치엔탐색기의 설계법에 대하여)

  • An, Hyeong-Keon;Hong, Young-Jin;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제44권3호
    • /
    • pp.61-67
    • /
    • 2007
  • In Reed Solomon decoder, when there are more than 4 error symbols, we usually use Chien search machine to find those error positions. In this case, classical method requires complex and relatively slow digital circuitry to implement it. In this paper we propose New fast and cost effective Chien search machine design method using Galois Subfield transformation. Example is given to show the method is working well. This new design can be applied to the case where there are more than 5 symbol errors in the Reed-Solomon code word.

Realization of Multiple-Control Toffoli gate based on Mutiple-Valued Quantum Logic (다치양자논리에 의한 다중제어 Toffoli 게이트의 실현)

  • Park, Dong-Young
    • Journal of Advanced Navigation Technology
    • /
    • 제16권1호
    • /
    • pp.62-69
    • /
    • 2012
  • Multiple-control Toffoli(MCT) gates are macro-level multiple-valued gates needing quantum technology dependent primitive gates, and have been used in Galois Field sum-of-product (GFSOP) based synthesis of quantum logic circuit. Reversible logic is very important in quantum computing for low-power circuit design. This paper presents a reversible GF4 multiplier at first, and GF4 multiplier based quaternary MCT gate realization is also proposed. In the comparisons of MCT gate realization, we show the proposed MCT gate can reduce considerably primitive gates and delays in contrast to the composite one of the smaller MCT gates in proportion to the multiple-control input increase.

Design of VLSI Architecture for Efficient Exponentiation on $GF(2^m)$ ($GF(2^m)$ 상에서의 효율적인 지수제곱 연산을 위한 VLSI Architecture 설계)

  • 한영모
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제41권6호
    • /
    • pp.27-35
    • /
    • 2004
  • Finite or Galois fields have been used in numerous applications such as error correcting codes, digital signal processing and cryptography. These applications often require exponetiation on GF(2$^{m}$ ) which is a very computationally intensive operation. Most of the existing methods implemented the exponetiation by iterative methods using repeated multiplications, which leads to much computational load, or needed much hardware cost because of their structural complexity in implementing. In this paper, we present an effective VLSI architecture for exponentiation on GF(2$^{m}$ ). This circuit computes the exponentiation by multiplying product terms, each of which corresponds to an exponent bit. Until now use of this type algorithm has been confined to a primitive element but we generalize it to any elements in GF(2$^{m}$ ).

REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS

  • Klin-eam, Chakkrid;Sriwirach, Wateekorn
    • Bulletin of the Korean Mathematical Society
    • /
    • 제56권1호
    • /
    • pp.131-150
    • /
    • 2019
  • In this paper, we consider the structure of ${\gamma}$-constacyclic codes of length $2p^s$ over the Galois ring $GR(p^a,m)$ for any unit ${\gamma}$ of the form ${\xi}_0+p{\xi}_1+p^2z$, where $z{\in}GR(p^a,m)$ and ${\xi}_0$, ${\xi}_1$ are nonzero elements of the set ${\mathcal{T}}(p,m)$. Here ${\mathcal{T}}(p,m)$ denotes a complete set of representatives of the cosets ${\frac{GR(p^a,m)}{pGR(p^a,m)}}={\mathbb{F}}p^m$ in $GR(p^a,m)$. When ${\gamma}$ is not a square, the rings ${\mathcal{R}}_p(a,m,{\gamma})=\frac{GR(p^a,m)[x]}{{\langle}x^2p^s-{\gamma}{\rangle}}$ is a chain ring with maximal ideal ${\langle}x^2-{\delta}{\rangle}$, where ${\delta}p^s={\xi}_0$, and the number of codewords of ${\gamma}$-constacyclic code are provided. Furthermore, the self-orthogonal and self-dual ${\gamma}$-constacyclic codes of length $2p^s$ over $GR(p^a,m)$ are also established. Finally, we determine the Rosenbloom-Tsfasman (RT) distances and weight distributions of all such codes.