• Title/Summary/Keyword: Galloping

Search Result 89, Processing Time 0.025 seconds

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

The Analysis of Power Line Galloping by Describing Function Method (Describing Function Method를 이용한 송전선의 전선도약(Galloping)현상 해석에 관한 연구)

  • 노창주;박한석;변기식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.339-345
    • /
    • 1992
  • Estimates of maximum amplitudes of conductor galloping are needed in order to determine appropriate phase-to-phase clearances on the overhead lines. One approach to obtaining these estimates is through the use of mathematical models of conductor galloping. Unfortunately, the models that consider both vertical conductor motion (Den Hartog type) and torsional conductor motion are often too complex for practical use. However, the estimates of maximum amplitude obtained from galloping models that assume only vertical (Den Hartog type) conductor motion tend to be too conservative. This paper presents the DF method to obtain the estimates of the amplitude and the frequency of galloping limit cycle, along with the wind pressure at which they occur, from a nonlinear dynamic model that considers both Den Hartog type and torsional conductor motion. From these results, the useful data for the line design guide and further insight into the mechanism of the conductor galloping are obtained.

  • PDF

Trajectory optimization for galloping quadruped robots (4 족보행 로봇의 갤로핑 궤적의 최적화)

  • Chae, Key-Gew;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.831-836
    • /
    • 2007
  • This paper proposes an optimal galloping trajectory which costs low energy and guarantees the stability of the quadruped robot. In the realization of the fast galloping, the trajectory design is important. As a galloping trajectory, we propose an elliptic leg trajectory, which provides simplified locomotion to complex galloping motions of animals. However, the elliptic trajectory, as an imitation of animal galloping motion, does not guarantee stability and minimal energy consumption. We propose optimization based on the energy and stability using a genetic algorithm, which provides the robust and global solution to a multi-body, highly nonlinear dynamic system. To evaluate and verify the effectiveness of the proposed trajectory, computer simulations were carried out.

  • PDF

Galloping of overhead transmission lines in gusty wind

  • Ohkuma, Takeshi;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.243-253
    • /
    • 2000
  • To develop galloping suppression devices, it is important to understand the effects of wind turbulence on galloping and to establish an evaluation method which takes 'large conductor deformations' into account. This paper introduces some findings on galloping in gusty wind obtained by numerical simulation using a model based on the Mogami Test Line of the Tokyo Electric Power Co. The equations of motion of the conductor are based on the Lagrangian formulations by Simpson, and they are made discrete in accordance with a finite element method.

Prediction of Galloping Accidents in Power Transmission Line Using Logistic Regression Analysis

  • Lee, Junghoon;Jung, Ho-Yeon;Koo, J.R.;Yoon, Yoonjin;Jung, Hyung-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.969-980
    • /
    • 2017
  • Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.

A Study on the Analysis of Galloping for Power transmission line (송전선의 전선도약 해석에 관한 연구)

  • 김환성;변기식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1051-1057
    • /
    • 2001
  • In this paper, we deal with three types of modelling method for the analysis of galloping in power transmission line (PTL). The single mass model is obtained under linearization method and it is applied into f-order model. On these models, the nature frequencies of PTL are obtained and it makes an effects on the galloping directly. In simulation, we verify that the maximum magnitude of nature frequency depends on the galloping distance of PTL. Also from the analysis of frequency response, a few of reduction method for galloping are introduced which is effected by distance of PTL, wind velocity and icing types.

  • PDF

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

The nonlinear galloping of iced transmission conductor under uniform and turbulence wind

  • Liu, Zhonghua;Ding, Chenhui;Qin, Jian;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.465-475
    • /
    • 2020
  • The analytical approach for stability and response of iced conductor under uniform wind or turbulent wind is presented in this study. A nonlinear dynamic model is established to describe the motion of iced conductor galloping. In the case of uniform wind, the stability condition is derived by analyzing the eigenvalue associated with linearized matrix; The first order and second order approximation of galloping amplitude are obtained using multi-scale method. However, real wind has random characteristics essentially. To accurately evaluate the performance of the galloping iced conductor, turbulence wind should be described by random processes. In the case of turbulence wind, the Lyapunov exponent is conducted to judge the stability condition; The probability density of displacement is obtained by using the path integral method to predict galloping amplitude. An example is proposed to verify the effectiveness of the previous methods. It is shown that the fluctuating component of wind has little influence on the stability of iced conductor, but it can increase galloping amplitude. The analytical results on stability and response are also verified by numerical time stepping method.