• Title/Summary/Keyword: Gallium

Search Result 596, Processing Time 0.03 seconds

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors by AZO/Ag/AZO Multilayer Electrode

  • No, Young-Soo;Yang, Jeong-Do;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • We fabricated an a-IGZO thin film transistor (TFT) with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = 400/50 ${\mu}m$) showed a subs-threshold swing of 3.78 V/dec, a minimum off-current of $10^{-12}$ A, a threshold voltage of 0.41 V, a field effect mobility of $10.86cm^2/Vs$, and an on/off ratio of $9{\times}10^9$. From the ultraviolet photoemission spectroscopy, it was revealed that the enhanced electrical performance resulted from the lowering of the Schottky barrier between a-IGZO and Ag due to the insertion of an AZO layer and thus the AZO/Ag/AZO multilayer would be very appropriate for a promising S/D contact material for the fabrication of high performance TFTs.

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition

  • Sung, Chang-Hoon;Kim, Geun-Woo;Seo, Yong-Jun;Heo, Si-Nae;Huh, Seok-Hwan;Chang, Ji-Ho;Koo, Bon-Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.144-148
    • /
    • 2011
  • $Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Nanosphere lithography is an inexpensive, simple, high-throughput nanofabrication process. NSL can be done in different ways, such as drop coating, spin coating or by means of tilted evaporation. Nitride-based light-emitting diodes (LEDs) are applied in different places, such as liquid crystal displays and traffic signals. The characteristics of gallium nitride (GaN)-based LEDs can be enhanced by fabricating nanopatterns on the top surface of the LEDs. In this work, we created differently sized (420, 320 and 140 nm) nanopatterns on the upper surfaces of GaN-based LEDs using a modified nanosphere lithography technique. This technique is quite different from conventional NSL. The characterization of the patterned GaN-based LEDs revealed a dependence on the size of the holes in the pattern created on the LED surface. The depths of the patterns were 80 nm as confirmed by AFM. Both the photoluminescence and electroluminescence intensities of the patterned LEDs were found to increase with an increase in the size of holes in the pattern. The light output power of the 420-nm hole-patterned LED was 1.16 times higher than that of a conventional LED. Moreover, the current-voltage characteristics were improved with the fabrication of differently sized patterns over the LED surface using the proposed nanosphere lithography method.

Computer Modeling, Characterization, and Applications of Gallium Arsenide Gunn Diodes in Radiation Environments

  • El-Basit, Wafaa Abd;El-Ghanam, Safaa Mohamed;Abdel-Maksood, Ashraf Mosleh;Kamh, Sanaa Abd El-Tawab;Soliman, Fouad Abd El-Moniem Saad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1219-1229
    • /
    • 2016
  • The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or g fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different ${\gamma}$ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

Fabrication and Electrical Characteristics of Transparent and Bendable a-IGZO Thin-film Transistors (투명 유연 a-IGZO 박막트랜지스터의 제작 및 전기적 특성)

  • Park, Sukhyung;Cho, Kyoungah;Oh, Hyungon;Kim, Sangsig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.120-124
    • /
    • 2016
  • In this study, we fabricate transparent and bendable a-IGZO (amorphous indium gallium zinc oxide) TFTs (thin-film transistors) with a-IZO (amorphous indium zinc oxide) transparent electrodes on plastic substrates and investigate their electrical characteristics under bending states. Our a-IGZO TFTs show a high transmittance of 82% at a wavelength of 550 nm. And these TFTs have an $I_{on}/I_{off}$ ratio of $1.8{\times}10^8$, a field effect mobility of $15.4cm^2/V{\cdot}s$, and a subthreshold swing of 186 mV/dec. The good electrical characteristics are retained even after bending with a curvature radius of 18 mm corresponding to a strain of 0.5% owing to mechanical durability of the transparent electrodes used in this study.

The immediate effects of 830-nm low-level laser therapy on the myofascial trigger point of the upper trapezius muscle in visual display terminal workers: A randomized, double-blind, clinical trial

  • Lee, Jung-Hoon;Lee, Sun-Min
    • International Journal of Contents
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2011
  • The aim of our study was to evaluate the immediate effects of an 830-nm Aluminium gallium arsenide (GaAlAs) laser, by examining the changes, in pressure-pain threshold (PPT) and tenderness at 3 kg of the myofascial trigger point (MTrP) of the upper trapezius muscle in visual display terminal (VDT) workers in comparison with placebo treatment. Thirty VDT workers (13 males, 17 females) with complaints of upper trapezius muscle were recruited. All participants were given either active GaAlAs laser (830 nm wavelength, 450 mW, 9 J at point) or placebo GaAlAs laser, according to the double-blinded and placebo-controlled trial. Both active and placebo low-level laser therapy (LLLT) treatments showed no significant effect on PPT and tenderness at 3 kg. These results suggest that a higher dosage may be necessary to produce immediate effects when applying LLLT to the MTrP of relatively large muscles such as the upper trapezius muscle.

An X-Ku Band Distributed GaN LNA MMIC with High Gain

  • Kim, Dongmin;Lee, Dong-Ho;Sim, Sanghoon;Jeon, Laurence;Hong, Songcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.818-823
    • /
    • 2014
  • A high-gain wideband low noise amplifier (LNA) using $0.25-{\mu}m$ Gallium-Nitride (GaN) MMIC technology is presented. The LNA shows 8 GHz to 15 GHz operation by a distributed amplifier architecture and high gain with an additional common source amplifier as a mid-stage. The measurement results show a flat gain of $25.1{\pm}0.8dB$ and input and output matching of -12 dB for all targeted frequencies. The measured minimum noise figure is 2.8 dB at 12.6 GHz and below 3.6 dB across all frequencies. It consumes 98 mA with a 10-V supply. By adjusting the gate voltage of the mid-stage common source amplifier, the overall gain is controlled stably from 13 dB to 24 dB with no significant variations of the input and output matching.

Highly Linear 2-Stage Doherty Power Amplifier Using GaN MMIC

  • Jee, Seunghoon;Lee, Juyeon;Kim, Seokhyeon;Park, Yunsik;Kim, Bumman
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • A power amplifier (PA) for a femto-cell base station should be highly efficient, linear and small. The efficiency for amplification of a high peak-to-average power ratio (PAPR) signal was improved by designing an asymmetric Doherty PA (DPA). The linearity was improved by applying third-order inter-modulation (IM3) cancellation method. A small size is achieved by designing the DPA using GaN MMIC process. The implemented 2-stage DPA delivers a power-added efficiency (PAE) of 38.6% and a gain of 33.4 dB with an average power of 34.2 dBm for a 7.2 dB PAPR 10 MHz bandwidth LTE signal at 2.14 GHz.