• Title/Summary/Keyword: Galaxy: evolution

Search Result 457, Processing Time 0.024 seconds

The Optical and IR Properties of Peculiar early-type galaxies from Stripe82 and WISE Data

  • Hong, Jueun;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Galaxy merging plays a important role to the formation and evolution of galaxy. Early-type galaxies are believed to be formed by galaxy merging. We combined 3 color images in g,r,i band using Stripe82 image of which the surface brightness is 2 mag deeper than that of SDSS image. We classified early-type galaxies which have the merging features, the evidence of galaxy mergers through careful visual inspection. We investigated the IR properties of early-type galaxies with the merging feature using WISE data. We analyzed the star formation according to the type of galaxy. Early-type galaxies with the merging feature show the higher star formation than non-merging galaxies, but the difference is not significant. This results implies that quite a few early-type galaxies might be formed by dry merger, not wet merger. Meanwhile, the most of ULIRGs show tidal tail, on the other hand, early-type galaxies show tidal tail including shell structure. It suggests that ULIRGs have more gas and it might be in early stage of galaxy merging, early-type galaxies might be in the late stage of galaxy merging.

  • PDF

KS4 Galaxy Clusters Catalog in Southern Sky

  • Park, Bomi;Im, Myungshin;Kim, Joonho;Hyun, Minhee;Lee, Seong-Kook;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2021
  • Galaxy clusters are the largest structures in the universe located at the top of the cosmological hierarchical model, so the evolution of the universe can be understood by studying clusters of galaxies. Therefore, finding a larger number of galaxy clusters plays an important role in exploring how the universe evolves. A large number of catalogs for galaxy clusters in the northern sky have been published; however, there are few catalogs in the southern sky due to the lack of wide sky survey data. KMTNet Synoptic Survey of Southern Sky(KS4) project, which observes a wide area of the southern sky about 7000 deg2 with KMTNet telescopes for two years, is in progress under the SNU Astronomy Research Center. We use the KS4 multi-wavelength optical data and measure photometric redshifts of galaxies for finding galaxy clusters at redshift z<1. Currently, the KS4 project has observed approximately 33% of the target region, and a pipeline that measures photometric redshifts of galaxies has been created. When the project is completed, we expect to find more than a hundred thousand galaxy clusters, and this will improve the study of galaxy clusters in the southern sky.

  • PDF

Discovery of Massive Galaxy Cluster Candidates in the Southern Sky

  • Park, Bomi;Im, Myungshin;Kim, Joonho;Hyun, Minhee;Lee, Seong-Kook;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2021
  • Galaxy clusters are the largest structures in the universe located at the top of the cosmological hierarchical model, so the evolution of the universe can be understood by studying clusters of galaxies. Therefore, finding a larger number of galaxy clusters plays an important role in exploring how the universe evolves. A large number of catalogs for galaxy clusters in the northern sky have been published; however, there are few catalogs in the southern sky due to the lack of wide sky survey data. KMTNet Synoptic Survey of Southern Sky(KS4) project, which observes a wide area of the southern sky about 7000 deg2 with KMTNet telescopes for two years, is in progress under the SNU Astronomy Research Center. We use the KS4 multi-wavelength optical data and measure photometric redshifts of galaxies for finding galaxy clusters at redshift z<1. Currently, the KS4 project has observed approximately 50% of the target region, and a pipeline that measures photometric redshifts of galaxies has been created. When the project is completed, we expect to find more than a hundred thousand galaxy clusters, and this will improve the study of galaxy clusters in the southern sky.

  • PDF

GALAXY SED FITTING

  • Denis, Burgarella;Mederic, Boquien;Veronique, Buat;Laure, Ciesla;Yannick, Rhoelly
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.205-208
    • /
    • 2017
  • Modelling and fitting the spectral energy distribution (SED) of galaxies or regions of galaxies is one of the most useful methods available to the astronomer nowadays. By modelling the SEDs and comparing the models to the observations, we can collect important information on the physical processes at play in the formation and evolution of galaxies. The models allow to follow the evolution of the galaxies from their formation on. The versatility of code is crucial because of the diversity of galaxies. The analysis is only relevant and useful if the models can correctly reproduce this diversity now and across (as best as possible) all redshifts. On the other hand, the code needs to run fast to compare several million or tens of millions of models and to select the best (on a probabilistic basis) one that best resembles the observations. With this important point in mind, it seems logical that we should efficiently make use of the computer power available to the average astronomer. For instance, it seems difficult, today, to model and fit SEDs without a parallelized code. We present the new Python version of CIGALE SED fitting code and its characteristics. CIGALE comes in two main flavours: CIGALE Classic to fit SEDs and CIGALE Model to create spectra and SEDs of galaxies at all redshifts. The latest can potentially be used in conjunction with galaxy evolution models of galaxy formation and evolution such as semi-analytic ones.

CHEMICAL EVOLUTION OF THE GALAXY: RADIAL PROPERTIES

  • PARK BYEONG-GON;KANG YONG HEE;LEE SEE-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.63-73
    • /
    • 1996
  • The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc$Y_1$ and -0.123dex/kpc in model $Y_2$, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model $Y_1$ is getting flatter with decreasing radius, while that in model $Y_2$ is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.

  • PDF

On the Global and Local Environmental Dependence of Type Ia Supernova Luminosity from the Analysis of SALT2 and MLCS2k2 Light-Curve Fitters

  • Kim, Young-Lo;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.40.3-40.3
    • /
    • 2019
  • There is growing evidence for the dependence of Type Ia supernova (SN Ia) luminosities on the environments. The origin of this correlation, however, is under debate. In order to explore the physical origin of the trend in detail, we analyze SN Ia light-curves by combining a sample of 1231 SNe Ia over a wide redshift range (0.01 < z < 1.37) in various SN surveys and employing two independent light-curve fitters of SALT2 and MLCS2k2. Although SALT2 is the most widely used fitter in the SN community, MLCS2k2 has a novelty in the context of an investigation of the luminosity evolution of SNe Ia. For this reason we use both fitters and analyze them separately. We also determine a stellar mass and a star formation rate (SFR) for a sample of ~600 host galaxies. In addition, because recent low-redshift studies suggest that this dependence manifests itself most strongly when using the local SFR at the SN location, we introduce a new method to infer the local environments by restricting the SN Ia sample in globally star-forming host galaxies to a low-mass host galaxy subset (${\leq}10^{10}M_{\odot}$). We find that SNe Ia in low-mass and star-forming host galaxies are fainter than those in high-mass and passive hosts, after light-curve corrections. Especially, for the first time in host studies, we show that SNe Ia in locally star-forming environments are $0.081{\pm}0.018$ mag fainter ($4.5{\sigma}$) than those in locally passive environments from the sample including SNe at the high-redshift range. Considering the significant difference in the mean stellar population age between these environments, the result would suggest that the origin of the environmental dependence is the luminosity evolution of SNe Ia.

  • PDF

Proving the Evolution of Relativistic Jet of Radio-Loud AGN, OVV 1633+382

  • Ro, Hyunwook;Sohn, Bong Won;Chung, Aeree;Krichbaum, Thomas P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2015
  • It is suggested that relativistic jets associated with active galactic nuclei (AGNs) can have great impacts on the evolution of the host galaxy. However, the physical properties of AGN jets including the formation mechanism are not well known to date, and hence the AGN feedback on the host galaxy is yet poorly understood. OVV 1633+382 as a highly variable AGN source (a.k.a. blazer) with a compact core and very well developed jet components is an excellent laboratory to study the jet formation mechanism of radio-loud AGN. Near 2002, a major flare was reported at mm wavelength with a dramatic increase of the flux, which is likely to be followed by a dense and bright outflow. In order to probe the evolution of the innermost region of this radio-loud AGN, we have monitored using the Very Large Baseline Array (VLBA) and the Effelsberg 100m single-dish radio telescope in 12 epochs from 2002 and 2005. The observations were conducted at 22, 43 and 86 GHz in full polarization mode. In this work, we present the intensity and spectral index maps at 22 and 43 GHz from our monitoring observations. We probe the kinematics and geometry of individual jet components to discuss the evolution of the jet.

  • PDF