• 제목/요약/키워드: Galaxy: abundances

검색결과 40건 처리시간 0.019초

THE LATE TYPE SPIRAL GALAXY NGC 7793. I. ABUNDANCES OF HII REGIONS

  • Chun, Mun-Suk
    • 천문학회지
    • /
    • 제16권1호
    • /
    • pp.1-5
    • /
    • 1983
  • Four HII regions of the Sd galaxy NGC 7793 were observed using AAT/IPCS. From these spectra we determined abundances of the elements using observed emission lines and electron temperatures. The calculated abundances show that this galaxy does not show any significant radial abundance gradient. The mean oxygen abundance is very much like the Orion nebulae and the nitrogen abundance is similar to the late type barred spiral galaxy NGC 1313.

  • PDF

Globular clusters with multiple red giant branches: Population synthesis models

  • Joo, Seok-Joo;Lee, Young-Wook;Na, Chongsam;Han, Sang-Il
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.75-75
    • /
    • 2013
  • Recent observations have shown that some massive globular clusters (GCs) host multiple stellar populations having different heavy element abundances enriched by supernovae. They usually accompany multiple red giant branches (RGBs) in the color-magnitude diagrams (CMDs), and are distinguished from most of the other GCs which display variations only in light element abundances. In order to investigate the star formation histories of these peculiar GCs, we have constructed synthetic CMDs based on the updated versions of Yonsei.Yale ($Y^2$) isochrones and horizontal branch evolutionary tracks which include the cases of enhancements in both helium and the total CNO abundances. To estimate ages and helium abundances of subpopulations in each GC, we have compared our models with the observations on the Hess diagram by employing a ${\chi}^2$ minimization technique. In this talk, we will present our progress in the population modeling for these GCs with multiple RGBs.

  • PDF

Globular clusters with multiple red giant branches: Low-resolution spectroscopy

  • Lim, Dongwook;Lee, Young-Wook;Roh, Dong-Goo;Han, Sang-Il
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.74.2-74.2
    • /
    • 2013
  • Recent spectroscopic observations have provided evidences for the multiple stellar populations having different abundances in some massive globular clusters (GCs). In particular, some of these GCs show clear separations of red giant-branches (RGBs) in calcium narrow band photometry. In order to confirm the differences in heavy element abundances and radial velocities among multiple RGBs, we have performed the low-resolution spectroscopy for the RGB stars in these GCs. The spectral data were taken from the multi-object spectroscopic mode with WFCCD mounted on the du Pont 2.5m telescope in Las Campanas Observatory. In this talk, we will present our progress in the spectroscopic analysis of the RGB stars in these GCs.

  • PDF

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

The Oosterhoff period groups and multiple populations in globular clusters

  • Jang, Sohee;Lee, Young-Wook;Joo, Seok-Joo;Na, Chongsam
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.82.1-82.1
    • /
    • 2014
  • The presence of multiple populations is now well-established in most globular clusters (GCs) in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables () between the two Oosterhoff groups. In our models, while matching the observed color-magnitude diagrams, the difference in is naturally reproduced as the instability strip is occupied by different subpopulations with increasing metallicity. The instability strip in the metal-poor group II clusters is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the metal-rich group I clusters are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich Oosterhoff group III clusters having RR Lyraes with longest can also be reproduced, if more helium-rich third generation stars (G3) are present in these GCs.

  • PDF

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.273-279
    • /
    • 2004
  • Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

ABUNDANCES OF PLANETARY NEBULAE IN M 31 AND M 32

  • HYUNG SIEK;ALLER LAWRENCE H.;HAN SOO-RYEON;KIM YOUNG-KWANG;HAN WONYONG;CHOI YOUNGJUN
    • 천문학회지
    • /
    • 제33권2호
    • /
    • pp.97-110
    • /
    • 2000
  • Planetary nebulae provide a direct way to probe elemental abundances, their distributions and their gradients in populations in nearby galaxies. We investigate bulge planetary nebulae in M 31 and M 32 using the strong emission lines, H$\alpha$, He I, [O III], [N II], [S II] and [Ne III]. From the [O III] 4363/5007 line ratio and the [O II] 3727/3729, we determine the electron temperatures and number densities. With a standard modeling procedure (Hyung, 1994), we fit the line intensities and diagnostic temperatures, and as a result, we derive the chemical abundances of individual planetary nebulae in M 31 and M 32. The derived chemical abundances are compared with those of the well-known Galactic planetary nebulae or the Sun. The chemical abundances of M 32 appear to be less enhanced compared to the Galaxy or M 31.

  • PDF

THE DISCOVERY OF TWO RED GIANT BRANCHES IN THE GLOBULAR CLUSTERS NGC 288 AND NGC 362

  • Roh, Dong-Goo;Lee, Young-Wook;Joo, Seok-Joo;Han, Sang-Il;Sohn, Young-Jong;Lee, Jae-Woo
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • We investigate the distribution of stars along the red giant branch (RGB) in the globular clusters (GCs) NGC 288 and NGC 362 from Caby photometry using the CTIO 4m Blanco telescope. Our color-magnitude diagrams in hk index show that the RGB stars have two distinct subpopulations with different Ca abundances apparently supplied by the Type II supernovae explosions. However, the RGB splits are not shown in the b - y color, as indicated by previous observations. Our stellar population models show that the presence of two distinct RGBs in these GCs can be reproduced if metal-rich second generation stars are also enhanced in helium and younger by 1 ~ 2 Gyrs.

  • PDF

Sgr A 분자운의 열적 SiO 천이선 관측연구 (OBSERVATIONS OF THERMAL TRANSITIONS OF SiO TOWARD THE SGR A MOLECULAR CLOUD)

  • 민영철;노덕규;김상준
    • 천문학논총
    • /
    • 제16권1호
    • /
    • pp.15-20
    • /
    • 2001
  • We observed the thermal transitions of SiO (J=I-0, 2-1) and $^{29}SiO$ (J=l-O) toward the Sgr A molecular clouds. The distribution and the velocity structure of SiO are very similar to previous results for 'quiet' interstellar molecules. We think· that the SiO has been well mixed with other molecules such as $H_2$ which may indicate that the formation of Sgr A molecular clouds was affected by the activities, such as shock waves or energetic photons, from the Galactic center in large scales. The total column density of SiO is about $4.1\times10^{14} cm^{-2}$ and the fractional abundance $SiO/H_2$ appears to be about 10 times larger than those of other clouds in the central region of our galaxy. The derived values are thought to be lower limits since the optical depths of the observed SiO lines are not very thin. The formation of SiO has been known to be critically related to shocks, and our results provide informative data on the environment of our Galactic center.

  • PDF

Enhanced Nitrogen in Morphologically Disturbed Blue Compact Galaxies at 0.20 < z < 0.35: Probing Galaxy Merging Features

  • 정지원;이수창;성언창;염범석;;이원형;경재만
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.39-39
    • /
    • 2013
  • We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z=0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either 'disturbed' or 'undisturbed', by visual inspection of the SDSS images, and using the Gini coefficient and M20. We derive oxygen and nitrogen abundances using the Te method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer (GALEX) GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the $H{\alpha}$ to near-UV star formation rate ratio. The equivalent width of the $H{\beta}$ emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer time scales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  • PDF