• Title/Summary/Keyword: Galaxies: nuclei

Search Result 121, Processing Time 0.021 seconds

THE PROPERTIES OF THE STELLAR NUCLEI WITH THE HOST GALAXY MORPHOLOGY IN THE ACSVCS

  • Lee, Hyun-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.195-200
    • /
    • 2011
  • We have revisited the ACS Virgo Cluster Survey (ACSVCS), a Hubble Space Telescope program to obtain ACS/WFC g and z bands imaging for a sample of 100 early-type galaxies in the Virgo Cluster. In this study, we examine 51 nucleated early-type galaxies in the ACSVCS in order to look into the relationship between the photometric and structural properties of stellar nuclei and their host galaxies. We morphologically dissect galaxies into five classes. We note that (1) the stellar nuclei of dwarf early-type galaxies (dS0, dE, and dE,N) are generally fainter and bluer with g > 18.95 and (g-z) < 1.40 compared to some brighter and redder counterparts of the ellipticals (E) and lenticular galaxies (S0), (2) the g-band half-light radii of stellar nuclei of all dwarf early-type galaxies (dS0, dE, and dE,N) are smaller than 20 pc and their average is about 4 pc, and (3) the colors of red stellar nuclei with (g - z) > 1.40 in bright ellipticals and lenticular galaxies are bluer than their host galaxies colors. We also show that most of the unusually "red" stellar nuclei with (g-z) > 1.54 in the ACSVCS are the central parts of bright ellipticals and lenticular galaxies. Furthermore, we present multi photometric band color - color plots that can be used to break the age-metallicity degeneracy particularly by inclusion of the thermally pulsing-asymptotic giant branch (TP-AGB) phases of stellar evolution in the stellar population models.

Do Compact Group Galaxies favor AGN?

  • Sohn, Ju-Bee;Lee, Myung-Gyoon;Hwang, Ho-Seong;Lee, Jong-Chul;Lee, Gwang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2012
  • We present preliminary results of a statistical study on the nuclear activity of compact group galaxies. What triggers Active Galactic Nuclei (AGN) is still a puzzling problem. One of the suggested AGN triggering mechanisms is galaxy-galaxy interaction. Many simulations have shown that gas can be supplied to the center of galaxies during galaxy encounters. In this regard, compact groups of galaxies are an ideal laboratory for studying the connection between galaxy interaction and nuclear activity because of their high densities and low velocity dispersions. We study the environmental dependence of the activity in galactic nuclei using 59 compact groups in the SDSS DR6. Using the emission line data, we classify galaxies in the compact groups. We find that 19% of the compact group galaxies are pure star-forming nuclei, 10% as transition objects, and only 7% of the galaxies in compact groups show the nuclear activity. The AGN fraction of compact group is higher than galaxy clusters, but lower than field environment. Implications of this result will be discussed.

  • PDF

Surface photometry and Structural properties of nearby dwarf galaxies

  • Seo, Mira;Ann, Hong Bae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.74.3-74.3
    • /
    • 2015
  • We present 2D- photometric decompositions of ~1,200 nearby dwarf galaxies. Our representative sample is derived from 'A catalog of Visually classified galaxies in the Local Universe'(Ann, Seo and Ha APJS,,,2015) of which galaxy morphological types are determined by visual inspection of color images using the Sloan Digital Sky Survey data release 7. In this catalog, dwarf galaxies were divided into 5 subtypes : dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. The dSph types are less brighter than other types, and galaxies with nuclei are slightly brighter than those with no nuclei in the same types. Sersic index n have a range 1~1.5, and $dE_{un}$ and $dSph_{un}$ galaxies have n less than 1, and $dSph_n$ galaxies have largest values. We performed two-dimensional decomposition of galaxies using GALFIT, and analyzed their structural components, and residual features which are seen in the residual image.

  • PDF

EVOLUTION OF LUMINOUS INFRARED GALAXIES REVEALED BY NEAR-INFRARED MULTI-BAND IMAGING OF THEIR HOSTS

  • Oi, Nagisa;Imanishi, Masatoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.301-303
    • /
    • 2012
  • We present the result of our near infrared J- (${\lambda}=1.25{\mu}m$), H- (${\lambda}=1.63{\mu}m$), and $K_s$-band (${\lambda}=2.14{\mu}m$) imaging of ultraluminous ($L_{IR}$ > $10^{12}L_{\odot}$) and luminous ($L_{IR}=10^{11-12}L_{\odot}$) infrared galaxies (ULIRGs and LIRGs), to investigate their relationship through properties of their host galaxies. We find that (1) for single-nucleus ULIRGs and LIRGs, their spheroidal host galaxies have similar properties, but ULIRGs display a substantially higher level of nuclear activity than LIRGs, suggesting that their infrared luminosity difference comes primarily from the different level of current nuclear activity. We infer that LIRGs and ULIRGs have similar progenitor galaxies, follow similar evolutionary processes, and may evolve into optically-selected QSOs. (2) Largely-separated multiple-nuclei ULIRGs have significantly brighter host galaxies than single-nucleus ULIRGs and LIRGs in $K_s$-band, indicating that multiple-nuclei ULIRGs have a bias towards mergers of intrinsically large progenitor galaxies, in order to produce high infrared luminosity ($L_{IR}$ > $10^{12}L_{\odot}$) even at the early merging stage. (3) We derive dust extinction of host galaxies of ULIRGs and LIRGs to be $A_V$ ~ 14 mag in the optical or equivalently $A_K$ ~ 0.8 mag in the near-infrared $K_s$-band, based on the comparison of host galaxy's luminosities in the J-, H-, and $K_s$-bands.

EVOLUTION OF ACTIVE GALACTIC NUCLEI BASED ON THE UNIFIED THEORY

  • Park, Seok-Jae;Vsihniac, Ethan T.
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.179-183
    • /
    • 1993
  • We analyze the evolution of active galactic nuclei for the decreasing accretion rate case. Our analysis is based on the unified theory of active galactic nuclei which entirely depends on the accretion rates of the central supermassive black holes. Our discussion leads us to conclude that active galactic nuclei may evolve from QSOs into the nuclei of Seyfert or radio galaxies.

  • PDF

RADIO EMISSION FROM AKARI GALAXIES

  • Pepiak, A.;Solarz, A.;Pollo, A.;Takeuchi, T.T.;Jurusik, W.;AKARI Team, AKARI Team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.339-341
    • /
    • 2012
  • It is a long known fact that there exists a tight correlation between far-infrared and radio emission both for galaxies hosting active galactic nuclei and for star forming galaxies. We probe the radio - infrared correlation for a sample of extragalactic sources constructed by the cross-correlation of the AKARI/IRC All-Sky Survey Point Source Catalogue, the AKARI/FIS All-Sky Survey Bright Source Catalogue, and the NRAO VLA Sky Survey. Additionally, all objects of our sample were identified as galaxies in NED and SIMBAD databases, and a part of them is known to host active galactic nuclei (AGNs). After remeasuring all the fluxes, in order to avoid small aperture effects, we compare the ratio of radio to infrared emission from different types of extragalactic sources, and discuss the FIR/radio correlation as seen by AKARI and make a comparison to the previous results obtained thanks to IRAS.

AGN WITH AKARI AND HERSCHEL

  • Barthel, Peter
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.179-183
    • /
    • 2017
  • AKARI and the subsequent Herschel Space Observatory have yielded tremendous advancement in our knowledge of the infrared-submillimeter properties of active galaxies and active galactic nuclei, AGN. This short review describes some highlights. Active galaxies are found to do what they are supposed to do: build up their stellar bodies while building up their central black holes.

SURVEY OF DUSTY ACTIVE GALACTIC NUCLEI BASED ON THE MID-INFRARED ALL-SKY SURVEY CATALOG

  • Oyabu, S.;Ishihara, D.;Yamada, R.;Kaneda, H.;Yamagishi, M.;Toba, Y.;Matsuhara, H.;Nakagawa, T.;Malkan, M.;Shirahata, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Many observations have found evidence of the presence of a large number of heavily obscured Active Galactic Nuclei (AGNs). However, the nature of this population is only poorly understood because heavy obscuration by dust prevents one from finding them at optical wavelengths. Mid-infrared AGN searches can overcome this obstacle by penetrating through dust and by detecting direct emission from the dust torus. Thus, we can identify most of the AGN population, including type-2 and buried AGNs. Using the AKARI mid-infrared all-sky survey, we performed an AGN search in the nearby universe. Utilizing the 2MASS photometry, we selected mid-infrared-excess sources and carried out near-infrared spectroscopic observations in the AKARI Phase 3. During these follow-up observations, we have found three galaxies that show strong near-infrared red continuum from hot dust with a temperature of about 500 K, but do not show any AGN features in other wavelengths. The most suitable explanation of near-infrared continuum is the presence of central AGNs. Therefore, we conclude that they are AGNs obscured by dust. We performed X-ray observations of the two galaxies with SUZAKU. No detections in the 0.4-10 keV suggest that the column density may be much higher than $N_H=10^{23.5}cm^{-2}$. Comparing the masses of the host galaxies with those of the SDSS AGNs, we find that the host galaxies of the dusty AGNs discovered with AKARI are less massive populations than those of optically selected AGNs.

DOES THE JET PRODUCTION EFFICIENCY OF RADIO GALAXIES CONTROL THEIR OPTICAL AGN TYPES?

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.159-161
    • /
    • 2014
  • The jet production efficiency of radio galaxies can be quantified by comparison of their kinetic jet powers $P_{jet}$ and Bondi accretion powers $P_B$. These two parameters are known to be related linearly, with the jet power resulting from the Bondi power by multiplication with an efficiency factor of order 1%. Using a recently published (Nemmen & Tchekhovskoy 2014) high-quality sample of 27 radio galaxies, I construct a $P_B$ - $P_{jet}$ diagram that includes information on optical AGN types as far as available. This diagram indicates that the jet production efficiency is a function of AGN type: Seyfert 2 galaxies seem to be systematically (with a false alarm probability of $4.3{\times}10^{-4}$) less efficient, by about one order of magnitude, in powering jets than Seyfert 1 galaxies, LINERs, or the remaining radio galaxies. This suggests an evolutionary sequence from Sy 2s to Sy 1s and LINERs, controlled by an interplay of jets on the one hand and dust and gas in galactic nuclei on the other hand. When taking this effect into account, the $P_B$ - $P_{jet}$ relation is probably much tighter intrinsically than currently assumed.

INFRARED - X-RAY CONNECTION IN NEARBY ACTIVE GALACTIC NUCLEI; AKARI AND MAXI RESULTS

  • Isobe, Naoki;Nakagawa, Takao;Yano, Kenichi;Baba, Shunsuke;Oyabu, Shinki;Toba, Yoshiki;Ueda, Yoshihiro;Kawamuro, Taiki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.185-187
    • /
    • 2017
  • Combining the AKARI Point Source Catalog and the 37-month Monitor of All-sky X-ray Image (MAXI) catalog, the infrared and X-ray properties of nearby active galactic nuclei were investigated. The 37-month MAXI catalog tabulates 100 nearby Seyfert galaxies, 73 of which are categorized into Seyfert I galaxies. Among these Seyfert galaxies, 69 ones were found to have an AKARI infrared counterpart. For the Seyfert I galaxies in this sample, a well-known correlation was found between the infrared and X-ray luminosities. However, the observed X-ray luminosity of the Seyfert II galaxies tends to be lower for the infrared luminosity than the Seyfert I galaxies. This suggests that the X-ray absorption is significant in the Seyfert II galaxies. The Seyfert II galaxies seem to have a bimodal distribution of the IR color between $18{\mu}m$ and $90{\mu}m$. Especially, a large fraction of the Seyfert II galaxies exhibits a redder IR color than the Seyfert I galaxies. A possible origin of the redder IR color is briefly discussed, in relation to the star formation activity in the host galaxy, and to the X-ray absorption.