• Title/Summary/Keyword: Gait assessment

Search Result 212, Processing Time 0.026 seconds

Correlations of Fugl-Meyer Assessment Scale, Gait Speed, and Timed Up & Go Test in Patients With Stroke (뇌졸중 환자에서 Fugl-Meyer 평가척도와 보행속도, Timed Up & Go 검사와의 상관관계)

  • Lee, Young-Jung;Yi, Chung-Hwi;Kwon, Oh-Yun;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • The purposes of this study were to find correlations among Fugl-Meyer Assessment scale, gait speed, and Timed Up & Go test (TUG) and to predict gait ability from subscales of Fugl-Meyer Assessment scale. The study population consisted of 30 stroke patients referred to the Department of Rehabilitation Medicine in the Bundang Jaesang General Hospital. All subjects were ambulatory with or without an assistive device. All participants were assessed on Fugl-Meyer Assessment scale and gait speed (m/s), TUG (s). The data were analyzed using independent t-test, Pearson product moment correlation analysis and stepwise multiple regression. The results revealed that all items of Fugl-Meyer Assessment scale, except passive joint range of motion were significantly correlated with gait speed and TUG. In particular, sensation score, lower extremity motor and coordination score have a significant correlation with gait speed and TUG (p<.05). The sensation score and lower extremity motor score were important factors in comfortable gait and maximal gait speed. Their power of explanation regarding comfortable gait and maximal gait speed were 63.0% and 65.0%, respectively. The sensation score and lower extremity coordination score were important factors in TUG. Their power of explanation regarding TUG was 55.0%. These results showed that Fugl-Meyer Assessment scale is significantly correlated with gait speed and TUG. Therefore Fugl-Meyer Assessment scale is an appropriate assessment tool to predict gait ability of patients with stroke. Further study about gait speed and TUG by change of Fugl-Meyer Assessment score is needed using a longitudinal study design.

  • PDF

Can Observational Gait Assessment Tools be used to Assess Independent Walking in Stroke Patients?

  • Ju, Sung-Kwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • PURPOSE: A gait assessment is an important component of the rehabilitation process, and observational gait assessment (OGA) is used routinely in clinical settings. This study examined the association of OGA tools with the independent walking ability in stroke patients to determine a cutoff value of the OGA tool according to independence levels of stroke patient gait. METHODS: Two hundred ten hemiparetic stroke patients participated in the study. The independence of gait was identified using the Functional Ambulation Category (FAC) classifications. The walking ability was assessed using OGA tools (Rivermead Visual Gait Assessment [RVGA], Wisconsin Gait Scale [WGS], Tinetti Gait Scale [TGS], and Functional Gait Analysis [FGA]). RESULTS: Stepwise multiple regression analysis showed that among the OGA tools, the FGA correlated with the FAC. The FGA explained approximately 77% of the variance in FAC. In distinguishing the independence levels, the cutoff values were as follows: between FAC 1 and FAC 0 was .5 points; between FAC 2 and lower levels, 5.5; between FAC 3 and lower levels, 11.5; between FAC 4 and lower levels, 14.5; and between FAC 5 and lower levels, 18.5. Items 1, 2, 3, and 10 were identified as explaining most of the variance in the FGA in the stepwise multiple regression. CONCLUSION: The present study found that the FGA is an assessment tool related to the level of gait independence after stroke. Furthermore, the FGA total score can serve as an index of the increase in independence level after stroke.

Reliability and Validity of a Smartphone-based Assessment of Gait Parameters in Patients with Chronic Stroke (만성 뇌졸중 환자에서 스마트폰을 이용한 보행변수 평가의 신뢰도와 타당도)

  • Park, Jin;Kim, Tae-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSE: Most gait assessment tools are expensive and require controlled laboratory environments. Tri-axial accelerometers have been used in gait analysis as an alternative to laboratory assessments. Many smartphones have added an accelerometer, making it possible to assess spatio-temporal gait parameters. This study was conducted to confirm the reliability and validity of a smartphone-based accelerometer at quantifying spatio-temporal gait parameters of stroke patients when attached to the body. METHODS: We measured gait parameters using a smartphone accelerometer and gait parameters through the GAITRite analysis system and the reliability and validity of the smartphone-based accelerometer for quantifying spatio-temporal gait parameters for stroke patients were then evaluated. Thirty stroke patients were asked to walk at self-selected comfortable speeds over a 10 m walkway, during which time gait velocity, cadence and step length were computed from smartphone-based accelerometers and validated with a GAITRite analysis system. RESULTS: Smartphone data was found to have excellent reliability ($ICC2,1{\geq}.98$) for measuring the tested parameters, with a high correlation being observed between smartphone-based gait parameters and GAITRite analysis system-based gait parameters (r = .99, .97, .41 for gait velocity, cadence, step length, respectively). CONCLUSION: The results suggest that specific opportunities exist for smartphone-based gait assessment as an alternative to conventional gait assessment. Moreover, smartphone-based gait assessment can provide objective information about changes in the spatio-temporal gait parameters of stroke subjects.

The Approach of Robot-assisted Gait Therapy for Locomotor Recovery of Chronic Stroke Patients: a Case Report

  • Shin, Hee-Joon;Lee, Ju-Hyeok;Seo, Dong-Kyu;Kim, Hong-Rae;Moon, Ok-Kon;Park, Si-Eun;Park, Joo-Hyun;Kim, Nyeon-Jun;Min, Kyung-Ok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.207-213
    • /
    • 2011
  • In this case report, we investigated the effects of robot-assisted gait therapy in a chronic stroke patient using motor assessment and gait analysis. A patient who suffered from the right hemiparesis following the left corona radiata and basal ganglia infarction received 30 minutes of robot-assisted gait therapy, 3 times a week for 4 weeks. Outcome was measured using Motoricity index(MI), Fugl-Meyer assessment(FMA), modified motor assessment scale(MMAS), isometric torque, body tissue composition, 10-meter gait speed and gait analysis. After robot-assisted gait therapy, the patient showed improvement in motor functions measured by MI, FMA, MMAS, isometric torque, skeletal muscle mass, 10-meter gait speed. In gait analysis, cadence, single support time, double support time, step length, walking speed improvement in after robot-assisted gait therapy. The results of this study showed that robot-assisted gait therapy is considered to facilitate locomotor recovery of the chronic hemiparetic stroke patient.

Validation of the Korean Functional Gait Assessment in Patients With Stroke (뇌졸중 환자를 대상으로 실시한 한글판 기능적 보행평가의 타당도)

  • Park, So-yeon
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 2016
  • Background: The Functional Gait Assessment (FGA) was developed to measure of gait-related activities. The FGA was translated in Korean but only a few psychometric characteristics had been studied. Objects: The purpose of this study was to evaluate the validity and reliability of the Korean version of FGA scale using Rasch analysis. Methods: The study included 120 patients with stroke (age range=30~83 years; mean${\pm}$standard deviation=$58.3{\pm}11.1$). The FGA and Berg Balance Scale were performed, and were analysed for dimensionality of the scale, item difficulty, scale reliability and separation, and item-person map using Rasch analysis. Results: The 4 rating scale categories of FGA were satisfied with optimal rating scale criteria. The most items of the FGA showed sound item psychometric properties except 2 items ('gait with the horizontal head turns', and 'gait with narrow base of support'), and the 2 misfit items were excluded for all further analyses. The 8 items were arranged in order of difficulty. The most difficult item was 'gait with eyes closed', the middle difficult item was 'gait level surface', and the easiest item was 'gait with vertical head turns.' A person separation reliability was .93 and the person separation index was 3.57. Conclusion: This study suggests that the 8-item Korean FGA are valid measure of assess the gait-related balance performance, and to set the goal of rehabilitation plan in patient with stroke.

Spatiotemporal Gait Parameters That Predict the Tinetti Performance-Oriented Mobility Assessment in People With Stroke

  • Jeong, Yeon-gyu;Kim, Jeong-soo
    • Physical Therapy Korea
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • The purpose of this study was to find which spatiotemporal gait parameters gained from stroke patients could be predictive factors for the gait part of Tinetti Performance-Oriented Mobility Assessment (POMA-G). Two hundred forty-six stroke patients were recruited for this study. They participated in two assessments, the POMA-G and computerized spatiotemporal gait analysis. To analyze the relationship between the POMA-G and spatiotemporal parameters, we used Pearson's correlation coefficients. In addition, multiple linear regression analyses (stepwise method) were used to predict the spatiotemporal gait parameters that correlated most with the POMA-G. The results show that the gait velocity (r=.67, p<.01), cadence (r=.66, p<.01), step length of the affected side (r=.49, p<.01), step length of the non-affected side (r=.53, p<.01), swing percentage of the non-affected side (r=.47, p<.01), and single support percentage of the affected side (r=.53, p<.01) as well as the double support percentage of the non-affected side (r=-.42, p<.01) and the step-length asymmetry (r=-.64, p<.01) correlated with POMA-G. The gait velocity, step-length asymmetry, cadence, and single support percentage of the affected side explained 67%, 2%, 2%, and 1% of the variance in the POMA-G, respectively. In conclusion, gait velocity would be the most predictive factor for the POMA-G.

Preliminary Study of Ambulation Training on Electromechanical Gait Trainer in Stroke Patients (전동식 보행 훈련기를 이용한 뇌졸중 환자 보행훈련의 사전연구)

  • Kim, Jae-Hyun;An, Seung-Huon;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of electromechanical gait trainer therapy in stroke patients. The gait trainer was designed to provide nonambulatory subjects the repetitive practice of a gait-like movement without overstraining therapist. To simulate normal gait, discrete stance and swing phase, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. Methods : This preliminary study investigated during 8 weeks therapy on the gait trainer could improve gait ability in 5 subacute and chronic hemiparetic stroke patients. Gait ability(time up & go [TUG], comfortable and maximal gait speed and functional ambulation category[FAC]), functional movement of lower extremity(Fugl-Meyer Assessment [FMA] and composite spasticity score [CSS]) and sensory of lower extremity(Fugl-Meyer Assessment sensory [FMA-s])were the measured. Results : TUG, comfortable and maximal gait speed and FMA were improved significantly. Although FAC, FMA-s and CSS were improved, there were not statistically significant. Conclusion : Therefore, the gait trainer enabled affected patients the repetitive practice of a gait-like movement, which is important for the restoration of walking ability.

  • PDF

Reliability and Validity of Gait Assessment Tools for Elderly Person (노인의 보행에 대한 평가 도구의 신뢰도와 타당도 조사 연구)

  • Kim, Jae-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • Purpose: The examine the Reliability and Validity of the modified Emory Functional Ambulation Profile (mEFAP), Tinetti. Gait (TG), Timed Up & Go Tes t (TUG), Comfortable Gait Speed (CGS), Berg Balance Scale (BBS) in assessing gait function and balance in elderly person. Methods: The 45 community-dwelling subjects were participated in this study. Reliability was determined by intra-class correlation coefficient (ICC$_{3,1}$), Bland and Altman method (Standard Error of Measurement (SEM), Smallest Real Difference (SRD)). Results: Validity was examined by correlation the mEFAP, TG, TUG, CGS, BBS. The intra-rater reliability were High (ICC$_{3,1}$ : mEFAP=0.95, TG=0.96, TUG=0.94, CGS=0.96, BBS=0.92) and Absolute reliability were excellent (SEM: mEFAP=1.90, TG=0.21, TUG=0.28 CGS=0.25, BBS=0.52), (SRD: mEFAP=5.26, TG=0.58, TUG=0.77, CGS=0.69, BBS=1.44). There were significant correlations between assessment tool (r=.0.58$\sim$0.78, p<0.01) indicating good validity. Our results provide strong evidence that the assessment tool has good reliability, validity for assessing elderly person undergoing rehabilitation. Conclusion: The gait assessment tool is a useful scale for measuring walking function and recovery in elderly person.

  • PDF

Correlation among Motor Function and Gait Velocity, and Explanatory Variable of Gait Velocity in Chronic Stroke Survivors

  • Lee, Dong Geon;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2022
  • Objective: The purpose of this study to investigate the correlations among the motor function, balance, and gait velocity and the strength that could explain the variation of gait velocity of chronic stroke survivors. Design: This was a cross-sectional cohort study. Methods: Thirty hemiplegic stroke survivors hospitalized in an inpatient rehabilitation center were participated. The muscle tone of ankle plantarflexor and muscle strength of ankle dorsiflexor were measured respectively with modified Ashworth scale (MAS) and hand-held dynamometer. And the motor recovery and function with Fugl-Meyer assessment (FMA), balance with Berg balance scale (BBS) and timed up and go (TUG) test were measured. Gait velocity was measured with GAITRite. The correlation among motor function, muscle tone, muscle strength, balance, and gait were analyzed. In addition, the strength of the relationship between the response (gait velocity) and the explanatory variables was analyzed. Results: The gait velocity had positive correlations with FMA, muscle strength, and BBS, and negative correlation with MAS and TUG. Regression analysis showed that TUG (𝛽=-0.829) was a major explanatory variable for gait velocity. Conclusions: Our results suggest that gait velocity had correlations with muscle strength, MAS, FMA, BBS, and TUG. The tests and measurements affecting the variation of gait velocity the greatest were TUG, followed by FMA, BBS, muscle strength, and MAS. This study shows that TUG would be a possible assessment tool to determine the variation of gait velocity in stroke rehabilitation.

Validation on the Application of Bluetooth-based Inertial Measurement Unit for Wireless Gait Analysis (무선 보행 분석을 위한 블루투스 기반 관성 측정 장치의 활용 타당성 분석)

  • Hwang, Soree;Sung, Joohwan;Park, Heesu;Han, Sungmin;Yoon, Inchan
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The purpose of this paper is to review the validation on the application of low frequency IMU(Inertial Measurement Unit) sensors by replacing high frequency motion analysis systems. Using an infrared-based 3D motion analysis system and IMU sensors (22 Hz) simultaneously, the gait cycle and knee flexion angle were measured. And the accuracy of each gait parameter was compared according to the statistical analysis method. The Bland-Altman plot analysis method was used to verify whether proper accuracy can be obtained when extracting gait parameters with low frequency sensors. As a result of the study, the use of the new gait assessment system was able to identify adequate accuracy in the measurement of cadence and stance phase. In addition, if the number of gait cycles is increased and the results of body anthropometric measurements are reflected in the gait analysis algorithm, is expected to improve accuracy in step length, walking speed, and range of motion measurements. The suggested gait assessment system is expected to make gait analysis more convenient. Furthermore, it will provide patients more accurate assessment and customized rehabilitation program through the quantitative data driven results.