• Title/Summary/Keyword: Gait Pattern

Search Result 294, Processing Time 0.022 seconds

A Study on Random Forest-based Estimation Model for Changing the Automatic Walking Mode of Above Knee Prosthesis (대퇴의족의 자동 보행 모드 변경을 위한 랜덤 포레스트 기반 추정 모델 개발에 관한 연구)

  • Na, Sun-Jong;Shin, Jin-Woo;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • The pattern recognition or fuzzy inference, which is mainly used for the development of the automatic walking mode change of the above knee prosthesis, has a disadvantage in that it is difficult to estimate with the immediate change of the walking environment. In order to solve a disadvantage, this paper developed an algorithm that automatically converts the walking mode of the next step by estimating the walking environment at a specific gait phase. Since the proposed algorithm should be implanted and operated in the microcontroller, it is developed using the random forest base in consideration of calculation amount and estimated time. The developed random forest based gait and environmental estimation model were implanted in the microcontroller and evaluated for validity.

Effects of excessive Pronation of the Foot on Knee joint Strength and Gait (발의 과도한 회내 상태가 슬관절 근력과 보행에 미치는 영향)

  • Jung, Sang-mo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • BACKGROUND: This study aimed to determine the changes in muscle strength and walking ability in patients who complained of knee instability due to excessive pronation of the foot. METHODS: Twenty patients (ten men and ten women) who complained of instability of the knee joint due to excessive pronation of the foot participated in the experiment. In the experimental group, the internal rotation of the tibia caused by excessive adduction of the foot was maintained as external rotation, and the joint state was to recognize the movement of the joint position changed through maintenance of the muscle. This exercise was performed five times for each patient, and the muscle strength maintenance was performed for 20 seconds. In the control group, stretching and range of motion (ROM) exercises were performed. For the stretching exercise, one specific motion was performed for 20 second, and the ROM exercise was performed to confirm the change in muscle strength in the knee joint area and walking ability. RESULTS: The knee flexion and extension strength in the patients with excessive pronation of the foot differed significantly from those in the subjects from the control group (p<.05). Further, the before-after comparison of the step time and length in the evaluation of walking ability, which affects overall postural movement due to knee joint instability, revealed a significant difference between the experimental and control groups (p<.05). CONCLUSION: The patients that were subjected to manual therapy and ROM exercise for the knee joint showed improved knee joint muscle strength and walking ability compared to the subjects from the control group.

The Effects of Neck Traction and Foot Type on Plantar Pressure Distribution during Walking (경추 견인기 부착 여부에 따른 발 형태별 보행 시 족저압에 미치는 영향)

  • Hong, Miran;Yi, Kyoungock
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.321-335
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of neck traction and foot type on plantar pressure distribution during walking. Method: Total of 24 data were collected from women working with a computer for more than 6 hours every day. Three groups by foot type were divided: Pes Planus, normal foot, and Pes Cavus. Depending on the foot type and cervical traction, plantar pressure variables were measured; CA, MF, PP, and CT. Each variable was divided into 12 masks. MANOVA was performed for the difference of plantar pressure variables by foot type, and a paired t-test was performed for the cervical traction within groups. Results: The total CA decreased in the Pes Planus (p<.001) and Pes Cavus (p<.05) groups. MF increased in the big toe (p<.01) and 2nd toe (p<.05) of the normal foot, and MF-3rd metatarsal decreased (p<.01). The MF-2nd toe (p<.01) and 3rd toe (p<.05) of Pes Cavus decreased. The PP decreased in 2nd toe (p<.05), 3rd toe (p<.01), and 4th toe (p<.05) of the Pes Cavus. In normal foot, the PP-3rd metatarsal (p<.05) and PP-4th metatarsal (p<.01) reduced. In Pes Planus, PP decreased in the hindfoot (p<.05). In Pes Cavus group wearing a neck-tractor, the CT-hindfoot increased (p<.05). Conclusion: There was a significant change in the plantar pressure change by foot type after neck traction. When walking with a neck-tractor, the heel impact was alleviated in the Pes Planus, and the Pes Cavus showed the smooth and effective propulsion in the push-off. Overall, weight acceptance was effectively performed when walking with neck-traction. It was also found that the neck-tractor corrects the alignment of the neck, thereby creating a more stable gait pattern.

Diagnosis of Sarcopenia in the Elderly and Development of Deep Learning Algorithm Exploiting Smart Devices (스마트 디바이스를 활용한 노약자 근감소증 진단과 딥러닝 알고리즘)

  • Yun, Younguk;Sohn, Jung-woo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.433-443
    • /
    • 2022
  • Purpose: In this paper, we propose a study of deep learning algorithms that estimate and predict sarcopenia by exploiting the high penetration rate of smart devices. Method: To utilize deep learning techniques, experimental data were collected by using the inertial sensor embedded in the smart device. We implemented a smart device application for data collection. The data are collected by labeling normal and abnormal gait and five states of running, falling and squat posture. Result: The accuracy was analyzed by comparative analysis of LSTM, CNN, and RNN models, and binary classification accuracy of 99.87% and multiple classification accuracy of 92.30% were obtained using the CNN-LSTM fusion algorithm. Conclusion: A study was conducted using a smart sensoring device, focusing on the fact that gait abnormalities occur for people with sarcopenia. It is expected that this study can contribute to strengthening the safety issues caused by sarcopenia.

A New Arm Swing Walking Pattern-based Walking Safety System (새로운 팔 스윙 보행 패턴 기반 보행 안전 시스템)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.88-95
    • /
    • 2020
  • In this paper, we propose a new arm swing walking pattern-based walking safety system for safe walking of elderly pedestrians. The proposed system is a walking safety system for elderly pedestrians using haptic-based devices such as smart bands and smart watches, and arm swing-based walking patterns to solve the problem that it is difficult to recognize the fall situation of pedestrians with the existing walking patterns of lower limb movements. Use. The arm swing-based walking pattern recognizes the number of steps and the fall situation of pedestrians through the swing of the arm using the acceleration sensor of the device, and creates a database of the location of the fall situation to warn elderly pedestrians when walking near the expected fall location. It delivers a message to provide pedestrian safety to the elderly. This system is expected to improve the safe walking rights and environment of the elderly.

An Observational Multi-Center Study Protocol for Distribution of Pattern Identification and Clinical Index in Parkinson's Disease (파킨슨병 변증 유형 및 지표 분포에 대한 전향적 다기관 관찰연구 프로토콜)

  • HuiYan Zhao;Ojin Kwon;Bok-Nam Seo;Seong-Uk Park;Horyong Yoo;Jung-Hee Jang
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Objectives: This study investigated the pattern identification (PI) and clinical index of Parkinson's disease (PD) for personalized diagnosis and treatment. Methods: This prospective observational multi-center study recruited 100 patients diagnosed with PD from two Korean medicine hospitals. To cluster new subtypes of PD, items on a PI questionnaire (heat and cold, deficiency and excess, visceral PI) were evaluated along with pulse and tongue analysis. Gait analysis was performed and blood and feces molecular signature changes were assessed to explore biomarkers for new subtypes. In addition, unified PD rating scale II and III scores and the European quality of life 5-dimension questionnaire were assessed. Results: The clinical index obtained in this study analyzed the frequency statistics and hierarchical clustering analysis to classify new subtypes based on PI. Moreover, the biomarkers and current status of herbal medicine treatment were analyzed using the new subtypes. The results provide comprehensive data to investigate new subtypes and subtype-based biomarkers for the personalized diagnosis and treatment of PD patients. Ethical approval was obtained from the medical ethics committees of the two Korean medicine hospitals. All amendments to the research protocol were submitted and approved. Conclusions: An objective and standardized diagnostic tool is needed for the personalized treatment of PD by traditional Korean medicine. Therefore, we developed a clinical index as the basis for the PI clinical evaluation of PD. Trial Registration: This trial is registered with the Clinical Research Information Service (CRIS) (KCT0008677)

Case Study of 4-Bar Linkage KAFO in Person With Poliomyelitis (소아마비에서 4절 연쇄 장하지보조기 사례연구)

  • Kim, Jang-Hwan;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Cynn, Heon-Seock;Choi, Heung-Sik
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.

Functional and Histopathological Changes Following Injection of Neurolytic Agents on Rat's Sciatic Nerve (흰쥐 좌골신경에 신경파괴제 주입 후 초래되는 하지 운동과 신경조직학적 변화)

  • Cheun, Jae-Kyu;Song, Sun-Ok;Jung, Sung-Won
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • Background: This study was undertaken to observe the functional changes of the hind limb and histopathological changes in the sciatic nerve after an injection of alcohol or phenol, which are commonly used neurolytic agents, highlighting the time of recovery. Methods: Forty-eight Sprague-Dawley rats weighing 200-300 g were used for the experiment. Histopathological changes under the electron microscope, were observed in the distal part of the sciatic nerve, into which 0.1 ml of alcohol or phenol was injected. This was severed in 3 rats of each group at 10 minutes, 1 hour, 24 hours, 3 days, 1, 2, 4 and 6 weeks later. The functional changes in the hind limbs were observed for 6 weeks by noting their walking pattern. Results: Following the injection of alcohol or phenol into the right sciatic nerve, the right hind limb showed a severe pronounced motor weakness and obvious gait changes. About 2 weeks later, gradual improvement of gait changes began, and after 6 weeks, the motor weakness and gait changes were no longer perceptible in both groups. The findings of any histopathological change were similar in both alcohol or phenol groups. At 10 minutes after injection, destructive lesions were confined to the unmyelinated fibers and the myelin sheath of small the myelinated fibers. On the 3rd day and at 1 week, pathologic changes in axonal fibers and Schwann cells were in being phagocytized in spite of myelin restitution. From 2 to 4 weeks, axonal regeneration and remyelination appeared at the same time a myelin disintegration and axonolysis. At 6 weeks, neural regeneration was similar to that of the contralateral control group. Conclusions: These results suggest that functional and histopathological changes, after injection of neurolytics into the peripheral nerves, are quite similar in both alcohol and phenol groups. The progression of functional and histopathological changes become more obvious according to the time interval following the injection. Consequently, side effects that develop following the use of alcohol or phenol may begin to improve around the time that nerve regeneration occurs, i.e., two to four weeks later.

  • PDF

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.

The Effect of Stair Depth on Ground Reaction Force Parameters - Asymmetric and Variability Indices - (계단보행 시 계단 너비가 지면반력 파라미터에 미치는 영향 -비대칭 지수 및 일관성 지수-)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.169-178
    • /
    • 2008
  • The goals of this study were to provide data of 3 dimensional ground reaction force(GRF) parameters during stair ascent and descent on three different stair runs and to investigate variability and asymmetry index of them. 10 healthy adults participated in this study and performed 7 different types of gait with 10 trials each. After data analysis, following results were found. Firstly, stair run did not affect on the pattern of GRF parameters, coefficient of variation and asymmetry index. Secondly, a significant different GRF pattern was found between level walking and stair walking. Especially, ascending stair walking has only large Fz1 and small Fz3 while level walking and descending stair walking have a "M" shape connected by Fz1, Fz2 and Fz3. Thirdly, only vertical GRF parameters of stair walking revealed acceptable coefficient of variation and asymmetry index.