• Title/Summary/Keyword: Gait Pattern

Search Result 294, Processing Time 0.028 seconds

Effect of Feedback Methods and Ambulatory Assistive Aids on Accuracy of Partial Weight Bearing (되먹임과 보행보조도구의 형태가 30%체중지지의 정확성에 미치는 영향)

  • Park, Eun-Young;Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.207-214
    • /
    • 2011
  • The purpose of this study was to investigate effect of feedback methods and ambulatory assistive aids on accuracy of partial weight bearing in healthy adults. Twenty subjects were recruited and trained to 30% weight bearing of body weight (BW) using 3-point gait crutches and wheeled walker pattern. Dynamic feedback group (n=11) was received dynamic postresponse feedback and static group (n=9) received static feedback. Force plate was used to measure %BW and GAITRite used to measure gait parameters in immediately and after 3 days of training. Immediately after training, there was not significantly at 30%BW target load in dynamic group with crutch gait (p>.05). There were significantly differences in %BW according to feedback methods and ambulatory aids (p<.05). There was not significant difference between immediately and after 3 days of training (p>0.05). There were significantly differences in gait velocity and stance ratio between crutches and wheeled walker gait (p<.05). Thus, it was suggested that if possible, use crutches, training for partial weight bearing via dynamic feedback is necessary.

Gait Analysis of Bilateral Lower Limb Amputee with Incline Training on Treadmill (트레드밀에서 경사 훈련을 실시한 양쪽 하지절단환자의 보행분석)

  • Ahn, Wang-Hun;Cho, Young-Ki;Park, Yi-Su
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2005
  • The purpose of this report was to describe the gait pattern and parameters of the complicated bilateral amputee with right transtibial and left tarsometatarsal amputation. Using a Vicon 370 three dimensional gait analysis system, the gait analysis was performed at pre and post-test. Treadmill Training with 15 degree, incline was practiced for 8weeks, 3times per week. In linear parameters, the Velocity, Stride length and Single limb support were increased than pre-test. but Cadence and Double limb support were less post-test than pre-test. In kinematics, the maximal pelvic tilt angle showed right side $21.87^{\circ}$, left side $20.67^{\circ}$ at pre-swing phase, and decreased as compared with pre-test. Especially, the inimal hip flexion angle showed right side $-6.83^{\circ}$, left side $1.52^{\circ}$ at pre-swing phase and increased as compared with pre-test. The maximal knee flexion angle disclosed right side $2.66^{\circ}$, left side $21.71^{\circ}$ at stance phase, and decreased as compared with pre-test. In kinetics, the hip extension moment on initial contact stage was right side 0.938NM/Kg, left side 0.09NM/Kg, which was impaired compared with normal person.

  • PDF

The Effects of Handrails during Treadmill Gait Training in Stroke Patients (뇌졸중 환자의 트레드밀 훈련 시 손잡이 유무 및 위치가 보행 및 균형에 미치는 영향)

  • Nam, Seok-Hyun;Kang, Kyung-Woo;Kwon, Jung-Won;Choi, Yong-Won;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Purpose: The purpose of this study was to examine the influence of a handrail (presence and position) on treadmill gait and balance in stroke patients during gait training. Methods: 39 patients with stroke (male 31, female 8) participated in this study. The training groups were classified into a no-handrail group (NHG), front handrail group (FHG), and bilateral handrail group (BHG). Each group comprised 13 subjects. The subjects were trained to walk in a straight path 30 minutes per day for 8 weeks. The Good Balance System was used to measure static balance and dynamic balance. To measure walking ability, timed up and go (TUG) was also assessed. Results: The NHG showed no significant differences in static balance, dynamic balance, and TUG. The FHG was significantly different in their medial-lateral speed of static balance, dynamic balance, and TUG. The BHG was significantly different in their static balance, dynamic balance, and TUG. Conclusion: These findings consider the effects of holding handrails concomitantly with changes in postural stability. We conclude that for training stroke patients, treadmill walking while holding handrails improves balance and gait more than treadmill walking without holding handrails. The resulting changes in muscle activity patterns may facilitate the transfer to a gait pattern. The results of this study suggest methods for training treadmill walking in stroke patients.

The Effect of a Hip Joint Strengthening Exercise using PNF on Balance, Sit-to-Stand Movement, and Gait in a Tibia Fracture Patient with Skin Defects - A Single Case Study - (PNF을 이용한 엉덩관절 강화운동이 피부 결손을 동반한 개방성 정강뼈 골절 환자의 균형과 앉았다 일어서기, 보행에 미치는 영향 - 단일사례연구 -)

  • Jung, Du-Kyo;Chung, Yi-Jung
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.317-332
    • /
    • 2018
  • Purpose: Patients with tibial fractures can have functional problems with balance and gait, as well as lower extremity muscle weakness. This case report aimed to describe the effect of hip joint strengthening exercises using proprioceptive neuromuscular facilitation (PNF) on balance and gait and lower limb function in a patient with tibia fracture. Methods: One patient diagnosed with tibial fracture was treated for seven weeks with the basic procedure, pattern, and technique of PNF for a hip joint strengthening exercise. Results: The results of pre- and post-intervention treatment showed improvements in physical function and structure in the clinical tests, including the manual strength test; the modified Ashworth scale; sensory evaluation; balance, sit-to-stand, and gait performance; and evaluation of lower limb function. Conclusion: Based on the results of this study, it is suggested that the use of theory-based proprioceptive neuromuscular stimulation for hip joint strengthening exercises positively affects patients' functional improvement in tibial fracture patients, and this may be used as a therapeutic exercise method for those with orthopedic problems in the lower extremities. One limitation of this study was that it was performed on only one tibia fracture patient, which makes it difficult to extend the treatment effects to all patients with this condition.

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.

Effect of uneffected side insole on Gait Pattern in Hemiplegia Patients (편마비 환자의 비손상측 안창 착용이 보행에 미치는 영향)

  • You, Jae-Eung;Jung, Seok
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.37-41
    • /
    • 2003
  • The aim of this study is to present the basic reference data Effect of uneffected side insole on Gait Pattern in Hemiplegia Patients. The basic gait parameters were extracted from 10 Adult Hemiplegia Patients, 5 left Hemiplegia Patients and 5 right Hemiplegia Patients, 50 to 60 years of age using VICON 512 Motion Analyzer. The results were as follows; 1) The mean Cadence of the shoes to the 1cm insole in shoes were $70.58{\pm}12.67\;steps/min$, to $77.28{\pm}14.58\;steps/min$.(p>0.05) 2) The mean Walking Speed of the shoes to the 1cm insole in shoes were $0.40{\pm}0.17\;m/s$, to $0.49{\pm}0.18\;m/s$.(p>0.05) 3) The mean Stride Length of the shoes to the 1cm insole in shoes were $0.67{\pm}0.20\;m$, to $0.75{\pm}0.19m$.(p>0.05) 4) The mean anterior angles of pint on the pelvic tilt for different the shoes to the 1cm insole in shoes were $13.22{\pm}7.25^{\circ}$, to $11.68{\pm}4.02^{\circ}$.(p>0.06) 5) The mean maximal angles of pint on the hip flexion motion for different the shoes to the 1cm insole in shoes were $24.62{\pm}8.35^{\circ}$, to $24.74{\pm}9.12^{\circ}$.(p>0.05) 6) The mean maximal angles of joint on the knee flexion motion for different the shoes to the 1cm insole in shoes were $34.27{\pm}16.71^{\circ}$, to $35.93{\pm}18.22^{\circ}$.(p>0.05) insole in shoes were $15.97{\pm}7.72^{\circ}$, to $18.77{\pm}11.03^{\circ}$.(p>0.05) 7) The mean maximal angles of joint on the ankle dorsiflexion motion for different the shoes to the 1cm. 8) The mean maximal angles of joint on the ankle plantarflexion motion for different the shoes to the 1cm insole in shoes were $-4.24{\pm}10.66^{\circ}$, to $-7.04{\pm}11.00^{\circ}$.(p<0.05)

  • PDF

Study on Lower Extremities Activities Pattern of ADL and Treadmill Gait According to Harness Body-Weight Support Percentages (일상생활 동작 및 하네스 체중지지율에 따른 트레드밀 보행 시 하지 패턴에 관한 연구)

  • Song, S.M.;Yu, C.H.;Kim, K.;Kim, J.J.;Song, W.K.;Hong, C.U.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The purpose of this paper is to analyze lower extremities pattern of daily activities and walking on the treadmill with passive body support system. The experiments will be used for basic research of developing active harness system. The experimental procedure has been validated on 5 healthy male subjects and we measured foot pressure and 8 section of lower limb muscles activities. The EMG results of ADL indicate that there have specific muscle activity patterns followed by each activities. The vastus lateralis muscle activities were highly seems on the activities that requires flection and extension of knee joint. The foot pressure value of stair descent activity was the highest due to the fact that it is come down to the direction of gravity. The results with the passive body weight support percentages show that the EMG and foot pressure values were declined according to increasement of the body weight support percentages. Therefore the body weight support system could apply gait rehabilitation system for various patients by changing the percentages of the body weight support.

  • PDF

The Effect of Changes in Walking Aids on Weight Bearing on the Cane and Foot in Stroke (뇌졸중 환자에서 지팡이 종류에 따른 지팡이와 양발의 체중지지에 미치는 영향)

  • Jung, Kyoung-Sim;Chung, Yi-Jung
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.113-117
    • /
    • 2012
  • Purpose: The purpose of this study was to analyze the weight bearing of the cane and foot for the different walking aids during walking. Methods: A total of 12 subjects (6 males, 6 female) with stroke were enrolled in the study. Foot sensor and an instrumented cane were integrated to analyze the vertical peak force on the foot and cane. Results: The vertical peak force applied on the quad cane gait resulted in a significantly higher rate, which was $10.60{\pm}6.48%$ of the body weight, when compared to that of mono cane gait which was $7.91{\pm}4.11%$. The results indicated significantly lower vertical peak force on the affected foot, without the help of a walking aid, as compared to that of walking with a cane (respectively, p<0.05). However, results showed that the differences in vertical peak force on the affected foot, between mono cane and quad cane, were not significant. Conclusion: In conclusion, the vertical peak forces were significantly greater, during a comparison between walking with a quad cane and walking with a mono cane. On the contrary, no significant difference in the vertical peak force on the affected foot between walking with quad cane and walking with a mono cane. Muscle activation pattern and walking pattern should be measured in future studies, to study the differences between walking with various walking aids in the lower and higher functioning hemiparetic subjects, as its use may mask underlying gait impairment.

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • v.39 no.6
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.