• Title/Summary/Keyword: Gait Analysis System

Search Result 321, Processing Time 0.027 seconds

EMG Analysis for Investigation Muscle-Collaborated Relationship during Golf Swing (골프스윙시 근육협응관계 구명을 위한 EMG 분석)

  • Shim, Tae-Yong;Shin, Seong-Hyu;Oh, Seung-Il;Mun, Jung-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.177-189
    • /
    • 2004
  • Kinematic and kinetic analysis using 3D Motion Capture system are common, yet there is little in the literature that discuss the relationship and coactivity between muscles during the golf swing. The purpose of this study was to describe the relationship between the employed 16 muscles during golf swing. We could observe 3 muscle patterns such as 'Line' shape, 'L' shape, and 'Loop' shape for the golf swing activity. The 'Line' shape indicates that two muscles act almost perfectly in phase, and the 'L' shape represents that two muscles act in a reciprocating manner(When one is active, the other is quiescent and vice versa). And the 'Loop' shape indicates that two muscles act sequently(After one is active, the other act). In these results, we knew the muscle patterns during golf swing is similar to the patterns during gait. And we presented it was possible to show the consistence of golf swing through the frequency analysis of muscle patterns. We believe that the results potentially useful for the golf players and coaches to analyze their performance.

Clinical Characteristics of Hip Joint Rotations and Knee Adduction Moment through 3D Gait Analysis (3차원 보행분석을 통한 무릎 모음 모멘트와 고관절 내외회전의 임상적 특성)

  • Kim, Yongwook;Kang, Seungmook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : The purpose of this study was to verify the relationships among the knee adduction moment, hip rotation range, strength of hip rotators, and Foot Posture Index of healthy young adults. Method : Thirty-two healthy adults(24 male, 8 females) participated in this study. Subjects performed 5 walking trials to evaluate the knee adduction moments using a three-dimensional motion analysis system. Hip rotation ranges and hip rotator strengths were measured using a standard goniometer and a handheld dynamometer, respectively. The mean of three trials of clinical tests was used for data analysis. Results : The first peak knee adduction moment was significantly correlated with the hip rotation ranges and hip rotator strengths (P<.05). The second peak knee adduction moment was showed significant correlations with hip external rotation and rotation ratio. There were no correlations between Foot Posture Index and all knee adduction moments (P>.05). Conclusion : This study suggests that imbalances of the range of motion and strength of the internal and external rotation of the hip joint can affect knee adduction moments. The impact may exacerbate musculoskeletal disorders such as osteoarthritis of the knee. Therefore, further studies should be conducted to evaluate the effects of clinical interventions to correct these imbalances on the reduction of the knee adduction moments in patients with knee osteoarthritis.

Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation (재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로>)

  • 김명회;장대진;박창일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

A numerical method for improving the reliability of knee translation measurement in skin marker-based motion analysis

  • Wang, Hongsheng;Zheng, Nigel
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.269-277
    • /
    • 2014
  • In skin-marker based motion analysis, knee translation measurement is highly dependent on a pre-selected reference point (functional center) on each segment determined by the location of anatomical landmarks. However, the placement of skin markers on palpable anatomical landmarks (i.e., femoral epicondyles) has limited reproducibility. Thus, it produces large variances in knee translation measurement among different subjects, as well as across studies. In order improve the repeatability of knee translation measurement, in this study an optimization method was introduced, by which the femoral functional center was numerically determined. At that point the knee anteroposterior translation during the stance phase of walking was minimized. This new method was tested on 30 healthy subjects during walking in gait lab with motion capture system. Using this new method, the impact of skin marker position (at anatomical landmarks) on the knee translation measurement has been minimized. In addition, the ranges of anteroposterior knee translations during stance phase were significantly (p<0.001) smaller than those measured by conventional method which relies on a pre-selected functional center ($11.1{\pm}3.5mm$ vs. $19.9{\pm}5.5mm$). The results of anteroposterior translation using this new method were very close to a previously reported knee translation (12.4 mm) from dual fluoroscopic imaging technique. Moreover, this new method increased the reproducibility of knee translation measurement by 50%.

Case Study of 4-Bar Linkage KAFO in Person With Poliomyelitis (소아마비에서 4절 연쇄 장하지보조기 사례연구)

  • Kim, Jang-Hwan;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Cynn, Heon-Seock;Choi, Heung-Sik
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.

The Effect of Height of Cane for Health Promotion on Mobility of Patients with Stroke (뇌졸중 환자의 건강증진을 위한 지팡이 높이가 보행과 체중지지율에 미치는 영향)

  • Seo, Tae-Hwa;Kwon, Sang-Min;Jeong, Yeon-Woo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.1
    • /
    • pp.207-215
    • /
    • 2019
  • This study examines the effect of the height of cane that hemiplegic patients due to stroke use on their plantar pressure in standing position, gait speed. The study suggests a new standard for appropriate cane height that considers the change of average height of population. Research subjects included 12 patients hospitalized in S Medical Care Hospital located in Gwangju Metropolitan City in South Korea who were diagnosed with stroke. Group A uses a cane of the height of the greater trochanter of femur, group B uses a cane of 5cm above the height of the greater trochanter of femur, and group C is a cane of 10cm above the height of the greater trochanter of femur. In the study result, non-affected side plantar pressure and affected side plantar pressure showed a significant difference among the cases where the cane height was the same as the A group, B group, C group. In the post-hoc analysis result, a significant difference was observed between the case of A group and C group. Gait speed showed no significant difference among the case of the A group, B group, C group. The asymmetry of the stroke affects not only the posture but also the walking that is related to daily life. Changes in the height of the cane did not affect walking speed. The change in the height of the cane showed a change in the weight support ratio, which is thought to have a positive effect on the asymmetry. In future clinical setting, this study result will be able to provide fundamental data regarding the cane height in the standing or walking therapy for hemiplegic patients due to stroke with cane application.

Evaluation of Insole-equipped Ankle Foot Or thosis for Effect on Gait based on Biomechanical Analysis (인솔 장착형 단하지 보조기의 생체 역학적 분석을 통한 보행 영향성 평가)

  • Jung, Ji-Yong;Kim, Jin-Ho;Kim, Kyung;Trieu, Pham Hai;Won, Yong-Gwan;Kwon, Dae-Kyu;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.469-477
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of insole-equipped ankle-foot-orthoses (AFO) on gait. 10 healthy males who had no history of injury in the lower extremity participated in this study as the subjects. The foot of each subject was first scanned, and the insole fit to the plantar was made using BDI-PCO(Pedcad Gmbh, Germany). The subject then was made to walk on a treadmill under four experimental conditions: 1) normal walking, 2) walking wearing AFO, 3) walking wearing AFO equipped with the insole, 4) walking wearing pneumatic-ankle-foot-orthosis (pAFO) equipped with the insole. During walking, foot pressure data such as maximum force, contacting area, peak pressure, and mean pressure was collected using Pedar-X system (Novel Gmbh, Germany) and EMG activity of lower limb muscles such as gastrocnemius medial head, gastrocnemius lateral head, and soleus was recorded using MP150 EMG module (BIOPAC System Inc., USA). Collected data was then analyzed using paired t-test in order to investigate the effects of the insole. As a result of the analysis, when insole was equipped, overall contacting area was increased while both the highest peak pressure and the mean pressure were significantly decreased, and EMG activity of the lower limb muscles was decreased. On the contrary, the cases of wearing AFO showed the decreased contacting area and the increased pressures. Therefore, the AFO equipped with a proper insole fit well to the foot can help comfortable walking by spreading the pressure over the entire plantar.

The Changes of Plantar Foot Pressure by External Loads during Walking in Flatfoot (보행 시 편평족에서 외적 무게 부하에 따른 족저압의 변화)

  • Chang, Jong-Sung;Park, Ji-Won;Kim, Chung-Sun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.4
    • /
    • pp.543-549
    • /
    • 2010
  • Purpose : The study was designed to investigate the changes of plantar foot pressure by different loads during walking in flatfoot. Methods : Fifteen subjects with flatfoot were recruited along with their written informed consent. They were asked to walk on plate at a self-selected and comfortable speed with loads of 0, 5, 10, and 15kg. Three walking trials were obtained and then averaged for data analysis. Foot pressure were measured from RS-Scan system (RS-Scan system, RS scan Ltd., German) and contact area, maximum force were analyzed. Results : There were significant increases on midfoot and decreases on forefoot in contact area. And there were significant increases in maximum force of foot pressure of 2nd metatarsal bone and midfoot. Conclusion : These findings revealed that flatfoot increases risk factors of metatarsal bone with different loads. Therefore, patients of flatfoot must be careful during walking with loads or activities of daily living.

The effect of lower limb muscle synergy analysis-based FES system on improvement of the foot drop of stroke patient during walking: a case study (하지 근육 시너지 분석 기반의 FES 시스템이 보행 시 뇌졸중 환자의 족하수 개선에 미치는 영향: 사례 연구)

  • Lim, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.523-529
    • /
    • 2020
  • Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.

Implementation of Behavior Notification System for Guide Dog Harness Using IMU and Accelerometer Sensor (IMU 및 가속도 센서를 이용한 안내견 하네스 행동 알림 시스템 구현)

  • Ahn, Byeong-Gu;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, a behavior notification system of the harness of a guide dog is implemented for a blind person to get helps for environmental and situational awareness while walking with the guide dog. IMU modules is attached on the guide dog's harness saddle and the acceleration sensor belt is mounted on its thigh. Gait estimation and behavior judgement are performed by recording and analyzing the outputs of the sensors. Performance analysis for seven different kinds of behaviors has been done. The seven different behaviors, which the guide dog recognizes, are descending stairs, climbing stairs, uphill, downhill, stop, flat road, and selective disobedience. Results for the performance analysis show that the average success rate of the behavior rule estimation of harness of the guide dog is 92.78% and the behavior notification system can be effectively used in real situations.