• Title/Summary/Keyword: Gain ratio compensation matrix

Search Result 2, Processing Time 0.017 seconds

Improved Leakage Signal Blocking Methods for Two Channel Generalized Sidelobe Canceller

  • Kim, Ki-Hyeon;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-128
    • /
    • 2006
  • The two-channel Generalized Sidelobe Canceller (GSC) scheme suffers from the presence of leakage signal in the reference channel. The leakage signal is caused by the dissimilar impulse responses between microphones, and different paths from speech source to microphones. Such leakage is detrimental to speech enhancement of the GSC since the desired reference signal becomes corrupted. In order to suppress the signal leakage, two matrix injection methods are proposed. In the first method, a simple gain compensation matrix is used. In the second, a projection matrix for reducing the error between the actual and the ideal primary and reference signals, is used. This paper describes the performance degradation resulting from leakage, and proposes effective methods to resolve the problem. Representative experiments were conducted to demonstrate the effectiveness of the proposed methods on recorded speech and noise in an actual automobile environment.

  • PDF

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF