• Title/Summary/Keyword: Gain Matrix

Search Result 424, Processing Time 0.027 seconds

China's Brain Gain at the High End: An Assessment of Thousand Youth Talents Program

  • Sun, Yutao;Guo, Rongyu;Zhang, Shuai
    • Asian Journal of Innovation and Policy
    • /
    • v.6 no.3
    • /
    • pp.274-294
    • /
    • 2017
  • While studies have viewed the effect of Chinese talent-attracting programs launched by government since reform and open door policy, little of them has assessed these programs empirically and pertinently. This article intends to assess an important program - the Thousand Youth Talents Program (TYTP). Frist, this paper proposed a transnational migration matrix of the academics to clarify the dynamic mechanism of academic brain gain at the high end. Then, the Kaplan-Meier analysis and Cox regression model are used to empirically analyze the policy effect of TYTP. The results show that, academic ability have double edged impacts on brain gain at the high end, some scholars whose last employer's academic ranking is world's Top100 have stronger willing to return, and the negative effect of academic ranking decreases with time passing; while scholars with a tenure-track position, a tenure position or a permanent position tend to stay overseas, and the hazard rate of staying increases with age. The older scholars have more intentions to go back China, while gender was not a significant factor influencing academic return at the high end. That is, the talent-attracting programs has partly succeeded in bringing back the academics at the high end.

A Study on System Identification of Active Magnetic Bearing Rotor System Considering Sensor and Actuator Dynamics (센서와 작동기를 고려한 자기베어링 시스템의 식별에 관한 연구)

  • Kim, Chan-Jung;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1458-1463
    • /
    • 2003
  • This paper presents an improved identification algorithm of active magnetic bearing rotor systems considering sensor and actuator dynamics. An AMB rotor system has both real and complex poles so that it is very hard to identify them together. In previous research, a linear transformation through a fictitious proportional feedback was used in order to shift the real poles close to the imaginary axis. However, the identification result highly depends on the fictitious feedback gain, and it is not easy to identify the additional dynamics including sensor and actuators at the same time. First, this paper discusses the necessity and a selection criterion of the fictitious feedback gain. An appropriate feedback gain minimizes dominant SVD(Singular Value Decomposition) error through maximizing rank deficiency. Second, more improvement in the identification is achieved through separating the common additional dynamics in all elements of frequency response matrix. The feasibility of the proposed identification algorithm is proved with two theoretical AMB rotor models. Finally, the proposed scheme is compared with previous identification methods using experimental data, and a great improvement in model quality and large amount of time saving can be achieved with the proposed method.

  • PDF

Temperature Dependence of the Gain Spectrum of a Quantum Well Laser (양자우물 레이저의 이득 곡선의 온도 의존성)

  • 김동철;유건호;박종대;김태환
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.302-309
    • /
    • 1995
  • We desinged a lattice-matched InGaAs/lnGaAsP quantum well laser that lases at $1.55{\mu}m$ at room temperature, and calculated the gain spectrum as a function of injected carrier density and temperature. For the calculation of band structures and momentum matrix elements, we used a transfer JIlatrix method based on a block-diagonalized 8x8 second-order Ii$.$ P Hamiltonian. This lattice-matched quantum well lases in transverse electric mode. As the temperature increases, the lasing wavelength gets longer, the transparency carrier density increases, and the differential gain is reduced. The temperature dependence of the gain spectrum comes from the temperature dependence of the band structure and that of the Fermi function, and the latter contributes dominantly.nantly.

  • PDF

GAIN-QoS: A Novel QoS Prediction Model for Edge Computing

  • Jiwon Choi;Jaewook Lee;Duksan Ryu;Suntae Kim;Jongmoon Baik
    • Journal of Web Engineering
    • /
    • v.21 no.1
    • /
    • pp.27-52
    • /
    • 2021
  • With recent increases in the number of network-connected devices, the number of edge computing services that provide similar functions has increased. Therefore, it is important to recommend an optimal edge computing service, based on quality-of-service (QoS). However, in the real world, there is a cold-start problem in QoS data: highly sparse invocation. Therefore, it is difficult to recommend a suitable service to the user. Deep learning techniques were applied to address this problem, or context information was used to extract deep features between users and services. However, edge computing environment has not been considered in previous studies. Our goal is to predict the QoS values in real edge computing environments with improved accuracy. To this end, we propose a GAIN-QoS technique. It clusters services based on their location information, calculates the distance between services and users in each cluster, and brings the QoS values of users within a certain distance. We apply a Generative Adversarial Imputation Nets (GAIN) model and perform QoS prediction based on this reconstructed user service invocation matrix. When the density is low, GAIN-QoS shows superior performance to other techniques. In addition, the distance between the service and user slightly affects performance. Thus, compared to other methods, the proposed method can significantly improve the accuracy of QoS prediction for edge computing, which suffers from cold-start problem.

A Study on the Linear Array Beamforming by Cross Correlation Matrix (상호상관 행렬을 이용한 선배열 빔형성 기법 연구)

  • 황수복;이성은
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.31-36
    • /
    • 2001
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise (S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. The improvement of beamforming is very important to detect modern underwater targets as noise reduction technology leads to considerably low-level acoustic emissions in the long range in complex environmental sea. In this paper, we proposed the spatial cross correlation beamforming (SCCBF) algorithm using cross correlation matrix of individual hydrophone pairs of linear array sensors. By the theoretical analysis and simulation, the proposed SCCBF is demonstrated that its performances compared to conventional beamforming (CBF) output can be obtain above 3dB of array gain and about half of beam width represented the bearing accuracy in target detection. Also, this paper presents sea test result of linear passive sonar system that the proposed algorithm implemented.

  • PDF

Overlapping Sound Event Detection Using NMF with K-SVD Based Dictionary Learning (K-SVD 기반 사전 훈련과 비음수 행렬 분해 기법을 이용한 중첩음향이벤트 검출)

  • Choi, Hyeonsik;Keum, Minseok;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.234-239
    • /
    • 2015
  • Non-Negative Matrix Factorization (NMF) is a method for updating dictionary and gain in alternating manner. Due to ease of implementation and intuitive interpretation, NMF is widely used to detect and separate overlapping sound events. However, NMF that utilizes non-negativity constraints generates parts-based representation and this distinct property leads to a dictionary containing fragmented acoustic events. As a result, the presence of shared basis results in performance degradation in both separation and detection tasks of overlapping sound events. In this paper, we propose a new method that utilizes K-Singular Value Decomposition (K-SVD) based dictionary to address and mitigate the part-based representation issue during the dictionary learning step. Subsequently, we calculate the gain using NMF in sound event detection step. We evaluate and confirm that overlapping sound event detection performance of the proposed method is better than the conventional method that utilizes NMF based dictionary.

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

Partly Random Multiple Weighting Matrices Selection for Orthogonal Random Beamforming

  • Tan, Li;Li, Zhongcai;Xu, Chao;Wang, Desheng
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.892-901
    • /
    • 2016
  • In the multi-user multiple-input multiple-output (MIMO) system, orthogonal random beamforming (ORBF) scheme is proposed to serve multiple users simultaneously in order to achieve the multi-user diversity gain. The opportunistic space-division multiple access system (OSDMA-S) scheme performs multiple weighting matrices during the training phase and chooses the best weighting matrix to be used to broadcast data during the transmitting phase. The OSDMA-S scheme works better than the original ORBF by decreasing the inter-user interference during the transmitting phase. To save more time in the training phase, a partly random multiple weighting matrices selection scheme is proposed in this paper. In our proposed scheme, the Base Station does not need to use several unitary matrices to broadcast pilot symbol. Actually, only one broadcasting operation is needed. Each subscriber generates several virtual equivalent channels with a set of pre-saved unitary matrices and the channel status information gained from the broadcasting operation. The signal-to-interference and noise ratio (SINR) of each beam in each virtual equivalent channel is calculated and fed back to the base station for the weighting matrix selection and multi-user scheduling. According to the theoretical analysis, the proposed scheme relatively expands the transmitting phase and reduces the interactive complexity between the Base Station and subscribers. The asymptotic analysis and the simulation results show that the proposed scheme improves the throughput performance of the multi-user MIMO system.

Low-complexity Joint Transmit/Receive Antenna Selection Algorithm for Multi-Antenna Systems (다중 안테나 시스템을 위한 낮은 복잡도의 송/수신안테나 선택 알고리즘)

  • Son, Jun-Ho;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.943-951
    • /
    • 2006
  • Multi-input-multi-output (MIMO) systems are considered to improve the capacity and reliability of next generation mobile communication. However, the multiple RF chains associated with multiple antennas are costly in terms of size, power and hardware. Antenna selection is a low-cost low-complexity alternative to capture many of the advantages of MIMO systems. We proposed new joint Tx/Rx antenna selection algorithm with low complexity. The proposed algorithm is a method selects $L_R{\times}L_T$ channel matrix out of $L_R{\times}L_T$ entire channel gain matrix where $L_R{\times}L_T$ matrix selects alternate Tx antenna with Rx antenna which have the largest channel gain to maximize Frobenius norm. The feature of this algorithm is very low complexity compare with Exhaustive search which have optimum capacity. In case of $4{\times}4$ antennas selection out of $8{\times}8$ antennas, the capacity decreases $0.5{\sim}2dB$ but the complexity also decreases about 1/10,000 than optimum exhaustive search.