• Title/Summary/Keyword: Gage

Search Result 563, Processing Time 0.042 seconds

An Experiment Study of Cyclic Seismic Behavior of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내전거동에 관한 실험적 연구)

  • 이철호;이재광;정종현;오명호;구은숙
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.317-326
    • /
    • 2002
  • Recently a simple design method for rib-reinforced seismic steel moment connections has been proposed based on equivalent strut model. An experimental program was implemented to verify the proposed design method and to develop the schemes that will prevent the cracking at the rib tip, where stress concentration was evident. All the specimens designed by the proposed method were able to develop satisfactory connection plastic rotation of 0.04 radian. Slight beam flange trimming, in addition to rib reinforcement, pushed the plastic hinging and local buckling of the beam away from the rip tip and effectively reduced the cracking potential at the rib tip. The strut action of the rib and resulting reverse shear in the beam web were also experimentally identified through the strain gage readings.

  • PDF

A Study on the Mechanical loads Monitoring System of a 750kW Wind Turbine (750kW급 풍력발전기의 부하 모니터링 시스템에 관한 연구)

  • Nam, Yun-Soo;Jang, Hu-Yeong;Yun, Tae-Jun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.63-69
    • /
    • 2008
  • The exact load measurements for the mechanical parts of wind turbine are important step both for evaluation of specific wind turbine design and for a certification process. A wind turbine monitoring system is essential equipment for mechanical load analysis of a wind turbine. This monitoring system is based on IEC 61400-13 and strain gage are used to measure a mechanical load of wind turbine. Also this system monitors signals from a meteorological mast. The measured signals which are sampled at 200 Hz are automatically saved on a data file in the unit of ten minutes. A detail explanation for the developed wind turbine monitoring system is presented in this study.

  • PDF

FE Analysis to predict the changes of involute-curve during cold-forging (냉간 단조시 인볼류트 곡선 변화 예측을 위한 유한요소 해석)

  • 천세환;이정환;이영선;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.34-38
    • /
    • 2003
  • In metal working, cold forging that has profit to satisfy dimension accuracy is using in various manufacturing products. Recently, most of the interest thing is precision forging of gear. Gear forging product is more strength than broaching gear, and it has many advantages with reduction of factory expenses. The reason of difficulty to improve accuracy of gear dimension compare to another products is the dimension accuracy is very high, approximately 10$\mu\textrm{m}$, and because die of involute teeth and elastic strain of forged tool differ from standard curve. This paper represent quantitative analysis of die and teeth of forged tool, namely difference of curves, with experiments and analyze the factor of dimension gap, finally, will design compensated involute curve.

  • PDF

FE techniques for the accurate prediction of part dimension in cold forging (냉간 단조품의 치수 정밀 예측을 위한 유한요소해석 기술)

  • 이영선;권용남;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.29-33
    • /
    • 2003
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension only by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered as reality, FE results could predict the part dimension within the range of 10 $\mu\textrm{m}$. And if temperature also is considered really, the predicted dimensions are well coincided with the experimental down to about 5$\mu\textrm{m}$.

  • PDF

The Study on Stress Distibution of a Slotted Plate (슬롯 을 갖는 平板 의 應力分布擧動 에 관한 硏究)

  • 송삼홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.367-376
    • /
    • 1982
  • Stress concentration mainly occurs near holes and notches. Then local stress is larger than nominal stress. It is necessary that stress concentration phenomena are studied because it can act as a cause of fracture of material. In order to analyze fracture of material including holes, stress concentration factor and stress distribution must be studied more carefully. In this paper the stress concentration and distribution of a slotted plate is examined. Hardened 7:3 brass plate with 4 different slots including a circular hole is used. And ratios of slot length to its root radius are 1, 2, 3, 24, 4. The stress distribution is measured by using strain gages attached to the plate with variable width. And obtained experimental data are adjusted by using calibrated gage factor.

Fatigue crack Propagation Rate and Crack Opening behavior in Weldment Observed by Laser ISDG Method (레이저간섭변위 게이지로 관찰한 용접재에서의 피로균열 열림거동과 피로균열 전파속도)

  • Song, Sam-Hong;Kim, Hyun;Choi, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.908-917
    • /
    • 1995
  • The constant .DELTA.K fatigue tests are performed in SS41 and its weldments to investigate crack opening behavior and fatigue crack propagation behavior at each parts of weldment and its boundary layer. The weldments were annealed after welding for the purpose of relieving residual stress. Every weldments has notch at weld metal zone, and fatigue crack propagates from weld metal zone to vase metal zone perpendicular to weld line. The Laser ISDG method is used in order to determine the crack opening ratio, this method is more precise than indirect measurement method, and faster and easier than other direct measurement method.

Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg (직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates (Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동)

  • 김진봉;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Application of a fiber optic TR-EEPI sensor to detect deformation and failure in composite materials (복합재료의 변형 및 파손탐지를 위한 광섬유 TR-EFPI 센서의 적용)

  • 박래영;권일범;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.31-34
    • /
    • 2002
  • A study on the method that can measure the internal strain of composite materials is performed to monitor the health status of composite structures. A fiber optic sensor was constructed using the total reflected extrinsic Fabry-Perot interferometer(TR-EFPI) probe with a broadband light source. Result obtained from electrical strain gage adhered on the aluminum beam specimen was compared with that from the fiber optic TR-EFPI sensor and showed a good agreement. It was found that fiber optic TR-EFPI sensor system was adequate for monitoring the strain and thus failure processes in the interior of composite materials.

  • PDF

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF