• Title/Summary/Keyword: Gadolinium-chelated

Search Result 2, Processing Time 0.015 seconds

Contribution of Microbleeds on Microvascular Magnetic Resonance Imaging Signal

  • Chang Hyun Yoo;Junghwan Goh;Geon-Ho Jahng
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.88-100
    • /
    • 2022
  • Purpose: Cerebral microbleeds are more susceptible than surrounding tissues and have been associated with a variety of neurological and neurodegenerative disorders that are indicative of an underlying vascular pathology. We investigated relaxivity changes and microvascular indices in the presence of microbleeds in an imaging voxel by evaluating those before and after contrast agent injection. Methods: Monte Carlo simulations were run with a variety of conditions, including different magnetic field strengths (B0), different echo times, and different contrast agents. ΔR2* and ΔR2 and microvascular indices were calculated with varying microvascular vessel sizes and microbleed loads. Results: As B0 and the concentration of microbleeds increased, 𝜟R2* and 𝜟R2 increased. 𝜟R2* increased, but 𝜟R2 decreased slightly as the vessel radius increased. When the vessel radius was increased, the vessel size index (VSI) and mean vessel diameter (mVD) increased, and all other microvascular indices except mean vessel density (Q) increased when the concentration of microbleeds was increased. Conclusions: Because patients with neurodegenerative diseases often have microbleeds in their brains and VSI and mVD increase with increasing microbleeds, microbleeds can be altered microvascular signals in a voxel in the brain of a neurodegenerative disease at 3T magnetic resonance imaging.

Determination of Electron Spin Relaxation Time of the Gadolinium-Chealted MRI Contrast Agents by Using an X-band EPR Technique (EPR을 통한 상자성 자기공명 조영제의 전자스핀 이완시간의 결정)

  • Sung-wook Hong;Yongmin Chang;Moon-jung Hwang;Il-su Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Purpose: To determine the electronic spin relaxation times, $T_{le}$, of three commercially available Gd-chelated MR contrast agents, Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA, using Electron Paramagnetic Resonance(EPR) technique. Material and Methods: The paramagnetic MR contrast agents, Gd-DTFA(Magnevist) , Gd-DTFA-BMA(OMNISCAN) and Gd-DOTA(Dotarem), were used for this study, The EPR spectra of these contrast agents, which were prepared 2:1 methanol/water solution, were obtained at low temperatures, from $-160^{\circ}C~20^{\circ}C$. The glassy-state EPR spectra for these contrast agents were then fitted by the simulation spectra generated with different zero-field splitting (ZFS) parameters by a computer simulation program 'GEN', which generates the EPR powder spectrum using a given ZFS in $3{\times}3$ tensor. Finally, the spin relaxation times of the contrast agents were then determined from the $T_{2e}$, D, and E values of the best simulation spectra using the McLachlan's theory of average relaxation rate. Results: The electronic transverse spin relaxation times, $T_{2e}'s$, of Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA were 0.113ns, 0.147ns and 1.81ns respectively. The g-values were 1.9737, 1.9735 and 1.9830 and the electronic spin relaxation times, $T_{1e}'s$, were 18.70ns, 33.40ns and $1.66{\mu}s$, respectively. Conclusion: The results of these studies reconfirm that the paramagnetic MR contrast agents with larger ZFS parameters should have shorter $T_{1e}'s$. Among three contrast agents used for this study, Gd-DOTA chelated with cyclic ligand structure shows better electronic property then the others with linear structure. Thus, it is concluded that the exact determination of ZFS parameters is the important factor in evaluating relaxation enhancement effect of the agents and in developing new contrast agents.

  • PDF