• Title/Summary/Keyword: Gadolinium-DTPA

Search Result 21, Processing Time 0.022 seconds

Determination of Electron Spin Relaxation Time of the Gadolinium-Chealted MRI Contrast Agents by Using an X-band EPR Technique (EPR을 통한 상자성 자기공명 조영제의 전자스핀 이완시간의 결정)

  • Sung-wook Hong;Yongmin Chang;Moon-jung Hwang;Il-su Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Purpose: To determine the electronic spin relaxation times, $T_{le}$, of three commercially available Gd-chelated MR contrast agents, Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA, using Electron Paramagnetic Resonance(EPR) technique. Material and Methods: The paramagnetic MR contrast agents, Gd-DTFA(Magnevist) , Gd-DTFA-BMA(OMNISCAN) and Gd-DOTA(Dotarem), were used for this study, The EPR spectra of these contrast agents, which were prepared 2:1 methanol/water solution, were obtained at low temperatures, from $-160^{\circ}C~20^{\circ}C$. The glassy-state EPR spectra for these contrast agents were then fitted by the simulation spectra generated with different zero-field splitting (ZFS) parameters by a computer simulation program 'GEN', which generates the EPR powder spectrum using a given ZFS in $3{\times}3$ tensor. Finally, the spin relaxation times of the contrast agents were then determined from the $T_{2e}$, D, and E values of the best simulation spectra using the McLachlan's theory of average relaxation rate. Results: The electronic transverse spin relaxation times, $T_{2e}'s$, of Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA were 0.113ns, 0.147ns and 1.81ns respectively. The g-values were 1.9737, 1.9735 and 1.9830 and the electronic spin relaxation times, $T_{1e}'s$, were 18.70ns, 33.40ns and $1.66{\mu}s$, respectively. Conclusion: The results of these studies reconfirm that the paramagnetic MR contrast agents with larger ZFS parameters should have shorter $T_{1e}'s$. Among three contrast agents used for this study, Gd-DOTA chelated with cyclic ligand structure shows better electronic property then the others with linear structure. Thus, it is concluded that the exact determination of ZFS parameters is the important factor in evaluating relaxation enhancement effect of the agents and in developing new contrast agents.

  • PDF

Comparative Evaluation between 1.5T vs 3.0T MRI in Brain Metastasis According to its Size

  • Jung, Woo-Seok;Jung, Tae-Sub;Heo, Jin;Lee, Jae-Hoon
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.22-22
    • /
    • 2003
  • The purpose of this study was to compare the detection rate of brain metastasis according to size of nodule between 1.5T and 3.0T MRI 대상 및 방법: We reviewed 44 patients with primary tumors and clinical symptoms suggesting brain metastasis. After administration of double dose gadolinium-DTPA, MR imaging was performed with 3D SPGR sequence by 3.0T MRI and then with T1 SE sequence by 1.5T MRI. Consequently, comparison was done in 1.5T T1 SE sequence and 3.0T 3D SPGR sequence. With use of the signal intensity (SI) measurements in the metastatic nodules and adjacent tissue, metastatic nodule-to-adjacent tissue SI ratio were calculated. In each patient, the number of metastatic lesions detected in 1.5T and 3.0T, and their size were assessed qualitatively by three blinded readers.

  • PDF

Intracranial Plasma Cell Granuloma

  • Kim, Dae-Jin;Choi, Yu-Seok;Song, Young-Jin;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.2
    • /
    • pp.161-164
    • /
    • 2009
  • Plasma cell granuloma is a tumor-like disease characterized by non-neoplastic polyclonal proliferation of plasma cells and other mononuclear cells. This disease occurs most frequently in the lung and upper respiratory tract, while the involvement of the central nervous system is very rare. A 44-year-old female patient presented with nausea and progressive visual disturbance. Brain magnetic resonance imaging (MRI) revealed the mass along the right tentorium with low signal intensity in the T2 weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) sequence, and an isosignal intensity in T1 weighted image (T1WI), the latter of which was enhanced after administration of gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA). The thickest portion of the tentorium was partially excised via the combined suboccipital and infratentorial approach. The histopathological examination indicated a diagnosis of plasma cell granuloma. Postoperative steroid therapy was administered for remnant tumor control. Although a follow up MRI scan taken 20 months after the operation showed a slight decrease in tumor size, the lesion had extended to the falx and left frontal convexity along with parenchymal edema at 32 months after the operation and the clinical status was aggravated. The mass was removed from the left frontal convexity. Radiation therapy was given, together with steroid administration.

Comparison of Three, Motion-Resistant MR Sequences on Hepatobiliary Phase for Gadoxetic Acid (Gd-EOB-DTPA)-Enhanced MR Imaging of the Liver

  • Kim, Doo Ri;Kim, Bong Soo;Lee, Jeong Sub;Choi, Guk Myung;Kim, Seung Hyoung;Goh, Myeng Ju;Song, Byung-Cheol;Lee, Mu Sook;Lee, Kyung Ryeol;Ko, Su Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.71-81
    • /
    • 2017
  • Purpose: To compare three, motion-resistant, T1-weighted MR sequences on the hepatobiliary phase for gadoxetic acid-enhanced MR imaging of the liver. Materials and Methods: In this retrospective study, 79 patients underwent gadoxetic acid-enhanced, 3T liver MR imaging. Fifty-nine were examined using a standard protocol, and 20 were examined using a motion-resistant protocol. During the hepatocyte-specific phase, three MR sequences were acquired: 1) gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA); 2) radial GRE with the interleaved angle-bisection scheme (ILAB); and 3) radial GRE with golden-angle scheme (GA). Two readers independently assessed images with motion artifacts, streaking artifacts, liver-edge sharpness, hepatic vessel clarity, lesion conspicuity, and overall image quality, using a 5-point scale. The images were assessed by measurement of liver signal-to-noise ratio (SNR), and tumor-to-liver contrast-to-noise ratio (CNR). The results were compared, using repeated post-hoc, paired t-tests with Bonferroni correction and the Wilcoxon signed rank test with Bonferroni correction. Results: In the qualitative analysis of cooperative patients, the results for CAIPIRINHA had significantly higher ratings for streak artifacts, liver-edge sharpness, hepatic vessel clarity, and overall image quality as compared to, radial GRE, (P < 0.016). In the imaging of uncooperative patients, higher scores were recorded for ILAB and GA with respect to all of the qualitative assessments, except for streak artifact, compared with CAIPIRINHA (P < 0.016). However, no significant differences were found between ILAB and GA. For quantitative analysis in uncooperative patients, the mean liver SNR and lesion-to-liver CNR with radial GRE were significantly higher than those of CAIPIRINHA (P < 0.016). Conclusion: In uncooperative patients, the use of the radial GRE sequence can improve the image quality compared to GRE imaging with CAIPIRINHA, despite the data acquisition methods used. The GRE imaging with CAIPIRINHA is applicable for patients without breath-holding difficulties.

The Effects of Rotational Correlation Time of Paramagnetic Contrast Agents on Relaxation Enhancement: Partial Binding to Macromolecules (거대분자에 부분적으로 결합한 상자성 자기공명 조영제의 회전속도가 이완증강에 미치는 영향)

  • 장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • Purpose : To evaluate the effect of rotational correlation time (${\tau}_R$) and the possible related changes of other parameters, ${\tau}_M,{\;}{\tau}_S,{\;}and{\;}(\tau}_V$ of gadolinium (Gd) chelate on T1 relaxation enhancement in two pool model. Materials and Methods : The NMRD (Nuclear Magnetic Relaxation Dispersion) profiles were simulated from 0.02 MHz to 800 MHz proton Larmor frequency for different values of rotational correlation times based on Solomon-Bloembergen equation for inner-sphere relaxation enhancement. To include both unbound pool (pool A) and bound pool (pool B), the relaxivity was divided by contribution from unbound pool and bound pool. The rotational correlation time for pool A was fixed at the value of 0.1 ns, which is a typical value for low molecular weight complexes such as Gd-DTPA in solution and ${\tau}_R$ for pool B was changed from 0.1 ns to 20 ns to allow the slower rotation by binding to macromolecule. The fractional factor of was also adjusted from 0 to 1.0 to simulate different binding ratios to macromolecule. Since the binding of Gd-chelate to macromolecule cab alter the electronic environment of Gd ion and also the degree of bulk water access to hydration site of Gd-chelate, the effects of these parameters were also included. Results : The result shows that low field profiles, ranged from 0.02 to 40 MHz, and dominated by contribution from bound pool, which is bound to macromolecule regardless of binding ratios. In addition, as more Gd-chelate bound to macromolecule, sharp increase of relaxivity at higher field occurs. The NMRD profiles for different values of ${\tau}_S$ show the enormous increase of low field profile whereas relaxivity at high field is not affected by ${\tau}_S$. On the other hand, the change in ${\tau}$V does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity value. The results shows a parabolic dependence of relaxivity on ${\tau}_M$. Conclusion : Binding of Gd-chelate to a macromolecule causes slower rotational tumbling of Gd-chelate and would result in relaxation enhancement, especially in clinical imaging field. However, binding to macromolecule can change water enchange rate (${\tau}_M$) and electronic relaxation ($T_le$) vis structural deformation of electron environment and the access of bulk water to hydration site of metal-chelate. The clinical utilities of Gd-chelate bound to macromolecule are the less dose requirement, the tissue specificity, and the better perfusion and intravascular agents.

  • PDF

Determination of Stereotactic Target Position with MR Localizer (자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정)

  • 최태진;김옥배;주양구;서수지;손은익
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.67-77
    • /
    • 1996
  • Purpose: To get a 3-D coordinates of intracranial target position was investicated in axial, sagittal and coronal magnetic resonance imaging with a preliminary experimented target localizer. Material and methods : In preliminal experiments, the localizer is made of engineering plastic to avoid the distrubance of magnetic field during the MR image scan. The MR localizer displayed the 9 points in three different axial tomogram. The bright signal of localizer was obtjained from 0.1~0.3% of paramagnetic gadolinium/DTPA solution in T1WI or T2WI. In this study, the 3-D position of virtual targets were examined from three different axial MR images and the streotactic position was compared to that of BRW stereotactic system in CT scan with same targets. Results: This study provided the actual target position could be obtained from single scan with MRI localizer which has inverse N-typed 9 bars. This experiment was accomplished with shimming test for detection of image distortion in MR image. However we have not found the image distortion in axial scan. The maximum error of target positions showed 1.0 mm in axial, 1.3 mm for sagittal and 1.7 mm for coronal image, respectivelly. The target localization in MR localizer was investicated with spherical virtual target in skull cadaver. Furthermore, the target position was confirmed with CRW stereotactic system showed a 1.3 mm in discrepancy. Summary : The intracranial target position was determined within 1.7 mm of discrepancy with designed MR localizer. We found the target position from axial image has more small discrepancy than that of sagittal and coronal image.

  • PDF

Current Trends and Recent Advances in Diagnosis, Therapy, and Prevention of Hepatocellular Carcinoma

  • Wang, Chun-Hsiang;Wey, Keh-Cherng;Mo, Lein-Ray;Chang, Kuo-Kwan;Lin, Ruey-Chang;Kuo, Jen-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3595-3604
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) has been one of the most fatal malignant tumors worldwide and its associated morbidity and mortality remain of significant concern. Based on in-depth reviews of serological diagnosis of HCC, in addition to AFP, there are other biomarkers: Lens culinaris agglutinin-reactive AFP (AFP-L3), descarboxyprothrombin (DCP), tyrosine kinase with Ig and eprdermal growth factor (EGF) homology domains 2 (TIE2)-espressing monocytes (TEMs), glypican-3 (GPC3), Golgi protein 73 (GP73), interleukin-6 (IL-6), and squamous cell carcinoma antigen (SCCA) have been proposed as biomarkers for the early detection of HCC. The diagnosis of HCC is primarily based on noninvasive standard imaging methods, such as ultrasound (US), dynamic multiphasic multidetector-row CT (MDCT) and magnetic resonance imaging (MRI). Some experts advocate gadolinium diethyl-enetriamine pentaacetic acid (Gd-EOB-DTPA) MRI and contrast-enhanced US as the promising imaging madalities of choice. With regard to recent advancements in tissue markers, many cuting-edge technologies using genome-wide DNA microarrays, qRT-PCR, and proteomic and inmunostaining studies have been implemented in an attempt to identify markers for early diagnosis of HCC. Only less than half of HCC patients at initial diagnosis are at an early stage treatable with curative options: local ablation, surgical resection, or liver transplant. Transarterial chemoembolization (TACE) is considered the standard of care with palliation for intermediate stage HCC. Recent innovative procedures using drug-eluting-beads and radioembolization using Yttrium-90 may exhibit beneficial effects in HCC treatment. During the past few years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Sorafenib is currently the only approved systemic treatment for HCC. It has been approved for the therapy of asymptomatic HCC patients with well-preserved liver function who are not candidates for potentially curative treatments, such as surgical resection or liver transplantation. In the USA, Europe and particularly Japan, hepatitis C virus (HCV) related HCC accounts for most liver cancer, as compared with Asia-Pacific regions, where hepatitis B virus (HBV) may play a more important role in HCC development. HBV vaccination, while a vaccine is not yet available against HCV, has been recognized as a best primary prevention method for HBV-related HCC, although in patients already infected with HBV or HCV, secondary prevention with antiviral therapy is still a reasonable strategy. In addition to HBV and HCV, attention should be paid to other relevant HCC risk factors, including nonalcoholic fatty liver disease due to obesity and diabetes, heavy alcohol consumption, and prolonged aflatoxin exposure. Interestingly, coffee and vitamin K2 have been proven to provide protective effects against HCC. Regarding tertiary prevention of HCC recurrence after surgical resection, addition of antiviral treatment has proven to be a rational strategy.

Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer

  • Jeong Ah Hwang;Ji Hye Min;Seong Hyun Kim;Seo-Youn Choi;Ji Eun Lee;Ji Yoon Moon
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.389-401
    • /
    • 2022
  • Objective: This study aimed to determine a factor for predicting suboptimal image quality of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in patients with extrahepatic bile duct (EHD) cancer before MRI examination. Materials and Methods: We retrospectively evaluated 259 patients (mean age ± standard deviation: 68.0 ± 8.3 years; 162 male and 97 female) with EHD cancer who underwent gadoxetic acid-enhanced MRI between 2011 and 2017. Patients were divided into a primary analysis set (n = 184) and a validation set (n = 75) based on the diagnosis date of January 2014. Two reviewers assigned the functional liver imaging score (FLIS) to reflect the HBP image quality. The FLIS consists of the sum of three HBP features, each scored on a 0-2 scale: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified into low-FLIS (0-3) or high-FLIS (4-6) groups. Multivariable analysis was performed to determine a predictor of low FLIS using serum biochemical and imaging parameters of cholestasis severity. The optimal cutoff value for predicting low FLIS was obtained using receiver operating characteristic analysis, and validation was performed. Results: Of the 259 patients, 140 (54.0%) and 119 (46.0%) were classified into the low-FLIS and high-FLIS groups, respectively. In the primary analysis set, total bilirubin was an independent factor associated with low FLIS (adjusted odds ratio per 1-mg/dL increase, 1.62; 95% confidence interval [CI], 1.32-1.98). The optimal cutoff value of total bilirubin for predicting low FLIS was 2.1 mg/dL with a sensitivity of 95.1% (95% CI: 88.9-98.4) and a specificity of 89.0% (95% CI: 80.2-94.9). In the validation set, the total bilirubin cutoff showed a sensitivity of 92.1% (95% CI: 78.6-98.3) and a specificity of 83.8% (95% CI: 68.0-93.8). Conclusion: Serum total bilirubin before acquisition of gadoxetic acid-enhanced MRI may help predict suboptimal HBP image quality in patients with EHD cancer.

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.