• 제목/요약/키워드: Gable Roof

검색결과 61건 처리시간 0.024초

내설성 향상을 위한 지붕형 조립식 파이프하우스의 개발 (Development of a Gable-roofed Prefabricated Pipe-house for Improvement of Snow Endurance)

  • 양인규;남상운
    • 한국농공학회논문집
    • /
    • 제51권3호
    • /
    • pp.71-78
    • /
    • 2009
  • Pipe section of bending part at the arch type pipe-house showed an ellipse with oblateness of 0.076 on the average. Flexural rigidity of bending part decreased by average 6.3% than that of an original round shape section. The deflection of arch type pipe-house measured by model experiments showed much bigger than the result of structural analysis. In case of arch type pipe-house, we supposed that the decrease of flexural rigidity for the bending part of pipes had an effect on deflection of roof under the working load. This effect should be considered in the structural analysis. Bending resistance of gable type pipe-house used a prefabricated connector which developed in this study showed about $1.5{\sim}1.8$ times stronger than that of the existing arch type or gable type processed bending. Therefore, we supposed that the gable-roofed prefabricated pipe-house is safer than arch type or bent gable type in case of heavy snowfall. According to house scales and section properties of steel pipe in use, safe snow depths and rafter intervals were presented for design of gable-roofed prefabricated pipe-house. Their standards were established in the range of the durable models recommended by RDA, and the comparative examinations were conducted by means of structural analysis. It was evaluated that the developed greenhouse model had a high applicability in the field.

Application of artificial neural network for determination of wind induced pressures on gable roof

  • Kwatra, Naveen;Godbole, P.N.;Krishna, Prem
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.1-14
    • /
    • 2002
  • Artificial Neural Networks (ANN) have the capability to develop functional relationships between input-output patterns obtained from any source. Thus ANN can be conveniently used to develop a generalised relationship from limited and sometimes inconsistent data, and can therefore also be applied to tackle the data obtained from wind tunnel tests on building models with large number of variables. In this paper ANN model has been developed for predicting wind induced pressures in various zones of a Gable Building from limited test data. The procedure is also extended to a case wherein interference effects on a gable roof building by a similar building are studied. It is found that the Artificial Neural Network modelling is seen to predict successfully, the pressure coefficients for any roof slope that has not been covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the wind tunnel testing effort for interference studies to almost half.

Optimal design of pitched roof frames with tapered members using ECBO algorithm

  • Kaveh, Ali;Mahdavi, Vahid Reza;Kamalinejad, Mohammad
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.643-652
    • /
    • 2017
  • Pitched roof frames are widely used in construction of the industrial buildings, gyms, schools and colleges, fire stations, storages, hangars and many other low rise structures. The weight and shape of the gable frames with tapered members, as a familiar group of the pitched roof frames, are highly dependent on the properties of the member cross-sectional. In this work Enhanced Colliding Bodies Optimization (ECBO) is utilized for optimal design of three gable frames with tapered members. In order to optimize the frames, the design is performed using the AISC specifications for stress, displacement and stability constraints. The design constraints and weight of the gable frames are computed from the cross-section of members. These optimum weights are obtained using aforementioned optimization algorithms considering the cross-sections of the members and design constraints as optimization variables and constraints, respectively. A comparative study of the PSO and CBO with ECBO is also performed to illustrate the importance of the enhancement of the utilized optimization algorithm.

정면 3칸 팔작지붕 불전의 추녀부 처마 곡선 구성 방법에 관한 연구 (A Study on Constructing Eave Curve of Part Chunyeo in the Three-Kan Hipped and Gable-roofed Buddhist Temples)

  • 위소연;성대철;신웅주
    • 건축역사연구
    • /
    • 제26권4호
    • /
    • pp.35-44
    • /
    • 2017
  • The purpose of this study is to classify three-Kan hipped and gable-roofed Buddhist temples with the construction of their eave curve of part chunyeo and examine the characteristics and causes. The conclusions have been drawn as follows: First, there are largely three ways to secure symmetry in eave curve of part chunyeo. One is to obtain symmetry in eave curve of part chunyeo by making the size of eaves curves on well sides the same and forming symmetric curves in the front section along with the side roof and then forming the straight line in the central part (hereinafter referred to as the long straight line section method). The second is a method to enlarge eaves curves in the front and form eaves curves on the roof section to be symmetric (hereinafter referred to as the front is larger than side eaves curves method). The third is the method to make eaves curves in the roof section to be symmetric by adjusting the roof length and making difference between the front and side roof's length minimum (hereinafter referred to as the roof length-controlling method). Second, there are 16 cases applying two or more methods, and they are the mainstream. Third, there are 12 cases applying the front is larger than side eaves curve method and roof length-controlling method both, which seems to be the most universal. To sum up, they secured symmetry in roof edges considering the construction of seonjayeon and pyeongyeon according to the size of the structure, recognition on the directions of entrance into the area of the building, forms of planes, harmony with structures around, recognition on roof curves in accordance with the size, and also structural faults in the chunyeo part.

Wind pressures on low-rise hip roof buildings

  • Ahmad, Shakeel;Kumar, Krishen
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.493-514
    • /
    • 2002
  • Seven hip roof building models for $10^{\circ}$, $15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$, $35^{\circ}$ and $40^{\circ}$ roof pitch with large overhangs of 1.1 m were tested in a wind tunnel at the university of Roorkee, India to investigate wind pressure distributions over hip roofs for various roof pitch and wind direction. The results show that the roof pitch and wind direction do significantly affect the magnitude and distribution of the roof pressures. The $40^{\circ}$ roof pitch has been found to experience the highest peak suctions at the roof corners amongst the seven hip roofs tested. Pressures on $15^{\circ}$, $20^{\circ}$ and $30^{\circ}$ hip roofs are comparable with those reported by Xu and Reardon (1998). Meecham et al. (1991) for $18.4^{\circ}$ hip roof is compatible with $15^{\circ}$ hip roof of the present study. Holmes's works (1994) on gable roof have also been compared with the present work. Zoning for codification has also been attempted since IS875 (Part-3) does not include this information. A comparison for design value has also been made with BRE Report No. 346.

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

전통목조건축물 지붕곡과 기울기에 관한 연구 - 사찰의 주불전을 중심으로 - (A Study on the roof curved ratio and slope of Korean Traditional Wooden Building - Focused on the Central Hall of Buddhist Temple -)

  • 고정주;이정수
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3894-3906
    • /
    • 2014
  • 본 연구는 정밀실측이 이루어진 국가지정문화재 중 사찰의 주불전을 대상으로 맞배지붕 건물과 합각지붕 건물로 구분하여 지붕에서 나타나는 앙곡, 안허리곡, 용마루곡과 지붕기울기를 분석하였다. 그 결과 는 다음과 같다. 첫째, 맞배지붕 건물의 앙곡과 안허리곡은 건물규모(면적), 내부 고주 유무 등과 밀접한 상관관계가 있다. 또한 5량가 구조와 7량가 구조중에 규모가 큰 7량가 구조에서 더 크게 나타났다. 둘째, 맞배지붕 건물의 앙곡과 안허리곡은 서로 상관관계가 있는데 앙곡이 큰 건물에서 안허리곡도 크게 나타난 것으로 분석되었다. 지붕기울기는 변수요인(평면요소, 입면요소, 단면요소)과는 크게 연관성이 없으며, 앙곡, 안허리곡, 용마루곡 크기는 공포의 외1출목과 외2출목에서 비슷한 크기였으나, 외3출목에서는 상대적으로 크게 나타났다. 셋째, 합각지붕 건물의 앙곡과 안허리곡은 맞배지붕 건물과는 다르게 서로 상관관계 없었는데, 전면과 측면은 서로 상관관계를 가지며 전면의 곡이 크게 나타난 건물에서는 측면에서도 크게 나타났다. 넷째, 합각지붕 건물 내부에 고주가 있는 건물은 앙곡과 안허리곡이 크게 나타난 반면, 고주가 없는 건물에서는 작게 나타났으며, 용마루곡은 건물규모와 건물높이에 밀접한 연관성이 있어, 건물이 높거나 큰 건물에서 용마루곡이 크게 나타났다. 지붕기울기는 맞배지붕 건물에서와 같이 변수요인과는 상관관계가 거의 없었다.

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • 제7권6호
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

조선전기 당(堂)·실(室) 결합 건축의 가구특성 분석 -방형 평면의 맞배직교형 지붕 가구를 중심으로- (A Study on the Structure of Combined Architecture of Dang and Sil in the Early Joseon Dynasty -Focusing on the Rectangular Plan and the Gable Roof Meeting at Right Angle-)

  • 김버들;이종서
    • 건축역사연구
    • /
    • 제26권2호
    • /
    • pp.31-42
    • /
    • 2017
  • This study investigates how the spatial recognition structure is emerging through the case of rectangular plan combined with a combination of Dang-Sil(堂室) and Gong(工) shape roof, and identifies a type of architecture in the early Joseon Dynasty that has never been revealed. The conclusion of this study is as follows. First, the Dang and the Sil are connected to each other, but the architectural elements such as pillars, frame, and windows are distinguished and appear as separate buildings. Second, the distinction between Dang and Sil is evident by the difference in the number of ridges and the shape of the roof. In addition, the roof and roof framework of the independent rooms and the rooms were common in the right angled architecture where the direction and the expandability of each structure were maintained. Third, the construction of the Dang-Sil combined structure, in which two or more structure frameworks were combined with the rectangular combined flat roof structure, gradually changed into a single structure with a single ridge. Fourth, this change means that people of the early Joseon Dynasty recognized the Dang and Sil as separate architecture, but the strict sense of spatial separation has disappeared over time.

고대 건축의 지붕부에 사용된 금속장식에 관한 연구 (A Study on the Ornamental Metal Used in the Roof of Ancient Architecture in Korea)

  • 윤일이
    • 대한건축학회논문집:계획계
    • /
    • 제36권2호
    • /
    • pp.63-70
    • /
    • 2020
  • In the ancient Buddhist temple area, various metal artifacts are still excavated. Therefore, the aim of this study is to approach the characteristics of ancient architecture through ancient metal artifacts. First, metal decoration of ancient architecture appears for the purpose of structure, decoration, arson. Then, as the method of wood structure is developed, the application is separated into structural, functional and decorative purposes. In ancient times, metal decoration has reduced the role of structure, but its decorative role has expanded. Second, various metallic ornaments were used on the roof of ancient architecture. As the wooden technology developed, the metal decoration was gradually omitted while applying the curve to the roof. Third, the metal ornaments used on the roof of ancient architectures include the ridge central decoration, roof top decoration, a nine-ring decoration, gable board Ornamental Metal, corner flower decoration, eaves nail, wind bell. And subsequent research requires a terminology that can link the results of archeology and Buddhist art through excavation as a result of architecture.