• Title/Summary/Keyword: GaAlAs laser

Search Result 119, Processing Time 0.028 seconds

양자점을 이용한 808 nm 파장대역의 고출력 레이저 칩 개발

  • O, Hyeon-Ji;Park, Seong-Jun;Kim, Min-Tae;Kim, Ho-Seong;Song, Jin-Dong;Choe, Won-Jun;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.87.2-87.2
    • /
    • 2012
  • 고출력 반도체 레이저 다이오드는 발진 파장 및 광 출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 및 1470 nm 인 고출력 레이저 다이오드의 경우 재료가공, 펌핑용 광원 (DPSSL, 광섬유 레이저), 의료, 피부미용 (점 제거), 레이저 다이오드 디스플레이 등 가장 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. 일례로 재료가공의 경우, 레이저 용접, 레이저 인쇄, 하드디스크의 레이저 텍스쳐링 등 그 응용분야는 무수히 많으며, 최근에는 미래 성장동력 사업의 하나로 중요한 이슈가 되는 태양전지에서 에지 분리 (edge isolation), ID 마킹, 레이저 솔더링 등에서 필수불가결한 광원으로 각광받고 있다. 808 nm 대역 In(Ga)AlAs quantum dots laser diode (QDLD) 성장을 위하여 In(Ga)AlAs QD active 와 In(Ga)AlAs QD LD 성장으로 크게 분류하여 여러 가지 test 실험을 수행하였다. 우선 In(Ga)AlAs QD LD 성장에 앞서 high power LD에 적용 가능한 GaAs/AlGaAs quantum well의 성장 및 전기 측정을 수행하여 그 가능성을 보았다. In(Ga)AlAs QD active layer의 효과적인 실험 조건 조절을 위해 QD layer는 sequential mithod (ex. n x (InGaAlAs t sec + InAs t sec + As 10 sec)를 사용하였다. In(Ga)AlAs QD active layer는 성장 온도, 각 sequence 별 시간, 각 source 양, barrier 두께 조절 및 타입변형, Arsenic flux 등의 조건을 조절하여 실험하였다. 또한 위에서 선택된 몇 가지 active layer 를 이용하여 In(Ga)AlAs QD LD 성장 조건 변화를 시도하였다.

  • PDF

The spinal neuronal activity induced by low power laser stimulation (저출력 레이저 자극에 의한 척수내 신경세포의 활성변화)

  • Oh, Kyung-Hwan;Choi, Young-Deog;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1005-1013
    • /
    • 2001
  • The present study was designed to investigate the effect of low power GaAlAs laser on spinal Fos expression related to the anti-nociceptive effect of laser stimulation. Low power GaAlAs laser was applied to either acupoint or non-acupoint for 2 hour under light inhalation anesthesia. Spinal Fos expression in the dorsal horn was compared to that obtained in inhalation anesthesia control group. Furthermore, we analyzed the effect of the local treatment of lidocaine on the spinal Fos expression evoked by low power GaAlAs laser stimulation. The results were summarized as follows: 1. In the normal animals, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with laser stimulation, Fos immunoreactive neurons were increased mainly in the medial half of ipsilateral laminae I-III at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and low power laser stimulation dramatically produced Fos expression in the spinal cord laminae that are related to the anti-nociceptive effect of laser stimulation. 2. In acupoint stimulated animals, 10mW of laser stimulation, not 3mW and 6mW intensity, significantly increased the number of Fos immunoreactive neurons in the spinal dorsal horn(p<0.05). However, laser stimulation on acupoint more dramatically increased the number of Fos immunoreactive neurons in the spinal cord rather than laser stimulatin on non acupoint. These result suggested that laser stimulatin on acupoint was more effective treatment to activate the spinal neuron than non acupoint stimulation. 3. The local treatment of lidocaine totally suppressed the activity of spinal neurons that were induced by lower power 1aser stimulation. These data indicated that the anti-nociceptive effect of laser stimulation was absolutely dependent upon the peripheral nerve activity in the stimulated location. In conclusion, these data indicate that 10mW of low power laser stimulation into acupoint is capable of inducing the spinal Fos expression in the dorsal horn related to the anti-nociceptive effect of laser stimulation, Furthermore, the induction of spinal Fos expression was totally related to the peripheral nerve activity in the laser stimulated area.

  • PDF

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure

  • Kwak, Jeonggeun;Park, Jongkeun;Park, Jeonghyun;Baek, Kijong;Choi, Ansik;Kim, Taekyung
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.

Effect of Infra-red laser irradiation on pain relive in rats (적외선 레이저 자극이 흰쥐의 진통 작용에 미치는 영향)

  • Lee In-Hak
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.89-96
    • /
    • 1997
  • The purpose of this study was to determine the effect of Ga-Al-As (Gallium-Aluminum-Arsenid) laser radiation on the tail-flick latency in rat. Thirty Sprague-Dawley male and female rats Were divided into five groups : that is control, laser 15sec radiation, laser 30sec radiation, laser 60sec radiation, and Tramadol Hcl injection groups. The continuous Ga-Al-As laser with, wave length 780-830nm and diameter of probe in the 3mm, averse output of 100mw radiation was applied to the meridian point(Gv 1 : Governing vessel) of the rats. Tail-flick latency were measured with hot plate at $55^{\circ}C$ : before treatment and immediately, 30 minutes, 1 hour, 2 hours, 24 hours, 24 hours and 48 hours after treatment. The result were as follows ; 1. The tail-flick latency according to time varition, control group was not significance. 2. The tail-flick latency according to time varition, laser 15 sec irradiate rats in post-treared was significance(P<0.05). 3. The tail-flick latency according to time varition, laser 30 sec irradiate rats group was not significance. 4. The tail-flick latency according to time varition, laser 60 sec irradiate rats in post 30 minute was significance(P<0.05). 5. The tail-flick latency according to time varition, Tramadol Hcl injection rats in post-treated (P<0.05), post 30 minute(P<0.05), post 60 minute (P<0.01) and 2 hour(P<0.05) was significance. This study suggest that Ga-Al-As (Gallium-Aluminum-Arsenid) laser applied to meridian point of the rat with 15 sec, 30 sec, and 60 set radiation could induc no analgesic effect, but Tramadol Hcl injection rat is good analgesic effect.

  • PDF

Effects of GaAsAl laser on the spinal neuronal activity induced by noxious mechanical stimulation (GaAsAl 레이저가 물리적 통증반응과 관련된 척수내 신경세포의 활성에 미치는 영향)

  • Song, Young-Wha;Lee, Young-Gu;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.545-558
    • /
    • 2000
  • The present study was designed to investigate the effect of low power GaAsAl laser on Fos expression in the spinal cord induced by noxious mechanical stimulation. Noxious mechanical stimulation was applied to the right hind paw following 30min of low power laser treatment using different intensity and treatment point and the resulting Fos expression in the spinal cord dorsal horn was compared to that obtained in rats exposed only to the noxious mechanical stimulation. The results were summarized as follows: 1. In intact control rats, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with noxious mechanical stimulation, neurons with nuclei exhibiting Fos immunostaining were distributied mainly in the medial half of ipsilateral laminae I-V at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and noxious mechanical stimulation treated animals. 2. In acupoint treated animals, 10mW of laser stimulation, not 3mW intensity, significantly reduced the number of Fos immunoreactive neurons in the spinal dorsal horn induced by noxious mechanical stimulation(P<.01). However, the supressive effect of low power laser stimulatin was not observed in 3m Wand 10m W of laser stimulation into non-acupoint. These data indicate that 10mW of low power laser stimulation into acupoint is capable of inhibiting the expression of Fos in the dorsal horn induced by noxious mechanical stimulation. In conclusion, these findings raise the possibility that low power laser stimulation into acupoint may be a promising alternative medicine therapy for the mechanical stimulation induced pain in the clinical field.

  • PDF

Fabrication and Characteristics of GaAs/AlGaAs GRIN-SCH Quantum Well Laser Diode by MOCVD (MOCVD를 이용한 GaAs/AlGaAs GRIN-SCH 양자 우물 레이저의 제작 및 특성)

  • 손정환
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.139-143
    • /
    • 1991
  • GRIN-SCH quantum well structured Laser Diode were fabricated using MOCVD and operated as CW at room temperature. The threshold current density of the LD with 670${\mu}{\textrm}{m}$ cavity length was 530 A/$\textrm{cm}^2$. For the ridge waveguide type index guiding structured LD with 6${\mu}{\textrm}{m}$ stripe width and 240${\mu}{\textrm}{m}$ cavity length, the threshold current was 50㎃. The maximum differential quantum efficiency was 0.95W/A when the optical output was 60mW. The lasing wavelength of QW LD was 865nm. In the L-I measurement. TE mode was superior to TM mode. From the near field pattern, single lateral mode operation was observed.

  • PDF

Terahertz Characteristics of InGaAs/InAlAs MQW with Different Excitation Laser Source

  • Park, Dong-U;No, Sam-Gyu;Ji, Yeong-Bin;O, Seung-Jae;Seo, Jin-Seok;Jeon, Tae-In;Kim, Jin-Su;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.300.2-300.2
    • /
    • 2014
  • 테라헤르쯔(terahertz : THz)파는 0.1~10 THz 의 범위로 적외선과 방송파 사이에 광대역 주파수 스펙트럼을 차지하고 있으며 직진성, 투과성, 그리고 낮은 에너지(meV)를 가지고 있어 비 파괴적이고 무해한 장점을 지니고 있다. Ti:sapphire laser와 같은 femto-pulse source 등이 많은 발전이 되어 현재 많은 연구와 발전이 이루어지고 있다. femto-pulse source를 이용한 THz 응용에서는 높은 저항, 큰 전자이동도, 그리고 아주 짧은 전하수명의 기판을 요구하는데 저온에서 성장한(low-temperature grown : LT) InGaAs는 격자 내에 Gallium 자리에 Arsenic이 치환 하면서 AsGa antisite가 발생하여 전하수명을 짧아지는 것을 응용하여 가장 많이 이용되고 있다. 본 연구에서는 보다 높은 저항을 얻기 위하여 molecular beam epitaxy를 이용하여 semi-insulating InP:Fe 기판위에 격자 정합된 LT-InGaAs:Be/InAlAs multi quantum well (MQW)를 well과 barrier를 가각 $10{\mu}m$ 씩 100주기 성장을 하였고 Ti와 Au를 각각 30, $200{\mu}m$로 dipole antenna를 제작 하였다. 이 때 Ti:sapphire femto-pulse laser (30 fs/90 MHz)를 excitation source로 사용하였을 때 9000 pA로 LT-InGaAs epilayer (180 pA)보다 50배 이상 큰 전류 신호를 얻을 수 있었다. THz 발생과 검출을 초소형, 초경량, 고효율로 하기 위해서는 fiber-optic를 이용해야 하는데 이때 분산과 산란 손실이 가장 적은 1550 nm 대역에서 많은 연구가 이루어 졌다. 780, 1560 nm의 mode-locking laser (90 fs/100 MHz)를 사용하여 현재 많이 이용되고 있는 Ti:sapphire femto-pulse laser와 비교하여 THz 특성 변화를 확인하는 연구를 진행 하고 있다.

  • PDF

Effects of Low Level Laser Therapy on Oral Mucositis Caused by Anticancer Chemotherapy in Pediatric Patients (소아 암 환자에서 항암제 치료 후 발생한 구내염에 대한 저출력 레이저의 효과)

  • Kim, Hae-Ja;Rho, Shi-Youn;Shin, Yong-Sup
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • Background: Oral mucositis is a common complication of anticancer chemotherapy. The sequelae of this consist of an increased risk of infection, moderate to severe pain, compromised oral function, and bleeding. This study was performed to evaluated the effects of the He-Ne laser and the Ga-Al-As laser on oral mucositis caused by anticancer chemotherapy in pediatric patients. Methods: There were 3 cases of osteosarcoma and 6 cases of leukemia. All patients received He-Ne laser (632.8 nm wavelength, power 60 mW) application on 400-600 Hz scanning for 5-20 minutes and Ga-Al-As laser (904 nm wavelength, power 40 mW) application by fiberoptic hand piece placed in immediate proximity to the tissue without direct contact with it for 30 seconds per point for 5 days per week. During the application patients wore wavelength-specific dark glasses and were instructed to keep their eyes closed. Results: The mean number of treatments with oral intake was $4.89{\pm}0.64$. The mean number of total treatments was $9.44{\pm}2.59$. There were no significant side effects during and after the laser treatments. Conclusions: He-Ne laser and Ga-Al-As (IR) laser treatment were well tolerated and reduced the severity and duration of chemotherapy-induced oral mucositis in pediatric oncologic patients.

  • PDF

CW Operation of LD-pumped Nd -YLF Laser- (레이저 다이오드로 펌핑되는 Nd:YLF 레이저의 발진 특성)

  • 강응철
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.289-293
    • /
    • 1993
  • A Nd:YLF laser pumped by a CW GaAlAs laser diode(LD) at 792 nm has been designed and fabricated. The output power was investigated as a function of LD spectrum and pump power. A folded laser resonator was desinged to compensate for the astigmatism produced at the Brewster surface of Nd:YLF rod. We obtained output power of CW 1.1 Watt when the pumping power was 2.8 Watt and the output wavelength of LD was temperature tuned to the peak absorption line of Nd:YLF. The overall efficiency was 39 % and slope efficiency was 41 %.

  • PDF