• 제목/요약/키워드: GWO

검색결과 43건 처리시간 0.022초

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

A Grey Wolf Optimized- Stacked Ensemble Approach for Nitrate Contamination Prediction in Cauvery Delta

  • Kalaivanan K;Vellingiri J
    • 자원환경지질
    • /
    • 제57권3호
    • /
    • pp.329-342
    • /
    • 2024
  • The exponential increase in nitrate pollution of river water poses an immediate threat to public health and the environment. This contamination is primarily due to various human activities, which include the overuse of nitrogenous fertilizers in agriculture and the discharge of nitrate-rich industrial effluents into rivers. As a result, the accurate prediction and identification of contaminated areas has become a crucial and challenging task for researchers. To solve these problems, this work leads to the prediction of nitrate contamination using machine learning approaches. This paper presents a novel approach known as Grey Wolf Optimizer (GWO) based on the Stacked Ensemble approach for predicting nitrate pollution in the Cauvery Delta region of Tamilnadu, India. The proposed method is evaluated using a Cauvery River dataset from the Tamilnadu Pollution Control Board. The proposed method shows excellent performance, achieving an accuracy of 93.31%, a precision of 93%, a sensitivity of 97.53%, a specificity of 94.28%, an F1-score of 95.23%, and an ROC score of 95%. These impressive results underline the demonstration of the proposed method in accurately predicting nitrate pollution in river water and ultimately help to make informed decisions to tackle these critical environmental problems.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

Symptom Prevalence and Related Distress in Cancer Patients Undergoing Chemotherapy

  • Thiagarajan, Muthukkumaran;Chan, Caryn Mei Hsien;Fuang, Ho Gwo;Beng, Tan Seng;Atiliyana, MA;Yahaya, NA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.171-176
    • /
    • 2016
  • Background: Much has been done to examine the psychological impact of cancer treatment, but it remains unclear to what extent anxiety and depression is related to symptom prevalence. The present study concerned the characteristics and frequency of distress as related to symptom prevalence in cancer patients undergoing chemotherapy in Malaysia. Materials and Methods: Participants were 303 consecutive adult cancer patients undergoing chemotherapy in an academic medical center. The short form Memorial Symptom Assessment Scale (MSAS-SF), which covers three domains of symptoms (global distress, physical- and psychological symptoms) was used to cross-sectionally measure symptom frequency and associated distress via self-reporting. One-way ANOVA and t-tests were used to test mean differences among MSAS-SF subscale scores. Results: Complete data were available for 303 patients. The mean number of symptoms was 14.5. The five most prevalent were fatigue, dry mouth, hair loss, drowsiness and lack of appetite. Overall, symptom burden and frequency were higher than in other published MSAS-SF studies. Higher symptom frequency was also found to be significantly related to greater distress in cancer patients undergoing chemotherapy. Conclusions: Patients undergoing chemotherapy suffer from multiple physical and psychological symptoms. Better symptom control or palliative care is needed. Greater frequency of reported symptoms may also indicate a subconscious bid by patients for care and reassurance - thus tailored intervention to manage distress should be offered.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

The Simulation and Forecast Model for Human Resources of Semiconductor Wafer Fab Operation

  • Tzeng, Gwo-Hshiung;Chang, Chun-Yen;Lo, Mei-Chen
    • Industrial Engineering and Management Systems
    • /
    • 제4권1호
    • /
    • pp.47-53
    • /
    • 2005
  • The efficiency of fabrication (fab) operation is one of the key factors in order for a semiconductor manufacturing company to stay competitive. Optimization of manpower and forecasting manpower needs in a modern fab is an essential part of the future strategic planing and a very important to the operational efficiency. As the semiconductor manufacturing technology has entered the 8-inch wafer era, the complexity of fab operation increases with the increase of wafer size. The wafer handling method has evolved from manual mode in 6-inch wafer fab to semi-automated or fully automated factory in 8-inch and 12-inch wafer fab. The distribution of manpower requirement in each specialty varied as the trend of fab operation goes for downsizing manpower with automation and outsourcing maintenance work. This paper is to study the specialty distribution of manpower from the requirement in a typical 6-inch, 8-inch to 12-inch wafer fab. The human resource planning in today’s fab operation shall consider many factors, which include the stability of technical talents. This empirical study mainly focuses on the human resource planning, the manpower distribution of specialty structure and the forecast model of internal demand/supply in current semiconductor manufacturing company. Considering the market fluctuation with the demand of varied products and the advance in process technology, the study is to design a headcount forecast model based on current manpower planning for direct labour (DL) and indirect labour (IDL) in Taiwan’s fab. The model can be used to forecast the future manpower requirement on each specialty for the strategic planning of human resource to serve the development of the industry.

EDNN based prediction of strength and durability properties of HPC using fibres & copper slag

  • Gupta, Mohit;Raj, Ritu;Sahu, Anil Kumar
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.185-194
    • /
    • 2022
  • For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.