• 제목/요약/키워드: GSTSPA

검색결과 1건 처리시간 0.013초

고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발 (Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository)

  • 이연명;조동건
    • 방사성폐기물학회지
    • /
    • 제18권2호
    • /
    • pp.179-194
    • /
    • 2020
  • 기존의 확률론적 안전성 평가의 신뢰도 제고를 위하여 잘 알려진 입력 파라미터의 일반적인 분포에 새롭게 측정된 신뢰도 있는 데이터를 결합하여 사후분포를 구할 수 있는 베이지안 업데이팅 방법론을 제안하였다. 마코프체인 몬테 칼로 샘플링 기법의 알고리듬을 통한 GoldSim 모듈도 개발하였다. 복수의 입력 파라미터의 사전분포에 대해 연속적으로 사후분포를 구해낼 수 있는 베이지안 업데이팅이 가능하도록 개발된 이 모듈을 GoldSim 템플릿 형태의 기존의 GSTSPA 프로그램으로 이행하여 보다 신뢰도 있는 확률론적 방사성폐기물 처분 시스템 안전성 평가가 가능하도록 하였다. 이는 기존에 존재하는 사전분포의 일반적인 형태는 취하되 새롭게 얻어지는 실제 측정치나 전문가들의 의견을 기존의 분포에 적용하여 보다 더 높은 믿음을 갖는 입력 파라미터의 사후분포를 얻을 수 있게 한다. 균열암반 내 핵종 이동에 관련된 몇 개의 입력 파라미터의 사전분포의 세차례의 연속적 업데이팅을 통해 프로그램의 유용성도 예시하였다. 이 연구를 통하여 처분시스템과 같이 장기적 평가가 필요하고 넓은 모델링 지역을 가지며 측정된 입력자료가 부족한 경우 보다 더 믿음직한 방법으로 안전성 평가를 수행할 수 있는 것을 보였다.