• Title/Summary/Keyword: GSHHS

Search Result 3, Processing Time 0.024 seconds

Fast landmark matching algorithm using moving guide-line image

  • Seo Seok-Bae;Kang Chi-Ho;Ahn Sang-Il;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.208-211
    • /
    • 2004
  • Landmark matching is one of an important algorithm for navigation of satellite images. This paper proposes a fast landmark matching algorithm using a MGLI (Moving Guide-Line Image). For searching the matched point between the landmark chip and a part of image, correlation matrix is used generally, but the full-sized correlation matrix has a drawback requiring plenty of time for matching point calculation. MGLI includes thick lines for fast calculation of correlation matrix. In the MGLI, width of the thick lines should be determined by satellite position changes and navigation error range. For the fast landmark matching, the MGLI provides guided line for a landmark chip we want to match, so that the proposed method should reduce candidate areas for correlation matrix calculation. This paper will show how much time is reduced in the proposed fast landmark matching algorithm compared to general ones.

  • PDF

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.70-75
    • /
    • 2007
  • 2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.

  • PDF