• Title/Summary/Keyword: GSH depletion

Search Result 78, Processing Time 0.028 seconds

Induction of Oxidative Stress and Cytoskeleton Damage by Cadmium in WB-F344 Rat Liver Epithelial Cells (랫드간장상피세포에서 카드뮴에 의한 산화적 스트레스 및 Cytoskeleton 손상 유발에 관한 연구)

  • 정상희;조명행;조준형
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.577-585
    • /
    • 1998
  • Cadmium is an important industrial and environmental pollutant and has adverse effects on cell growth and metabolism, although the mechanisms of its cellular toxicity are still unclear. This study was performed to elucidate the cytotoxic mechanism of cadmium in the viewpoint of oxidative stress and cytoskeleton alterations in WB-F344 rat liver epithelial cells. 200 $\mu\textrm{M}$ $CdCl_2$ caused a severe disassembling of microtubule and micro filament and an apparent cell retraction under an observation with fluorescence micoscope. (equation omitted)-tubulin and F-actin protein were highly thiolated at 20 min and then disappeared from 1 hour after the treatment of 200 $\mu$M CdCl$_2$in the immunoblot analysis. Intracellular GSH was decreased from 1hr to 24 hrs by 66.6 or 200 $\mu\textrm{M}$ of $CdCl_2$. Intracellular protein thiol was also decreased by 22.2, 66.6 and 200 $\mu\textrm{M}$ of $CdCl_2$ at 1 hour after its treatment. The product of lipid peroxidation (malondialdehyde) was increased from 4 hrs by 66.6 and 200$\mu\textrm{M}$ of $CdCl_2$. These data indicate that cadmium induces oxidative stress involving disassembling of microtubule and micro filament, thiolation of (equation omitted)-tubulin and actin protein, depletion of GSH and protein thiol, and increase of lipid peroxidation.

  • PDF

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

Excess Taurine Induced Placental Glutathione S-transferase Positive Foci Formation in Rat

  • Kweon, Sang-Hui;Kim, Yoon;Choi, Hay-Mie;Kwon, Woo-Jung;Chang, Kyung-Ja
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.469-475
    • /
    • 2000
  • The purpose of this study was to examine the chemopreventive potential of taurine at various levels on the diethylnitrosamine (DEN)·induced hepatocarcinogenesis. Male Sprague-Dawley rats were fed on diets containing 0, 1, 2, 3% taurine or 5% ${\beta}-alanine$ for taurine depletion. Then they were treated with DEN and 2/3 partial hepatectomy. The number of placental glutathione S-transferase positive ($GST-P^+$) foci, as a preneoplastic marker in the 1 % taurine group was lower than the control diet group. However the difference was insignificant. Although taurine diets reduced the thiobarbituric acid reactive substance (TBARS) level, the number of $GST-P^+$ foci was increased in 3% taurine diet group. The 1 % taurine diet increased the glutathione (GSH) level and GST activity, however they unfortunately did not suppress the foci formation. In the 3% taurine group, the GSH level and GSH peroxidase (GPx) activity were significantly decreased. Excess taurine supplementation of the pharmaceutical dose worked against hepatic chemoprevention, which might result from modulation of GPx activity and GSH utility. On the contrary, taurine might work as an antioxidant against TBARS production as the 1 % taurine diet increased GSH level. The potency of the cancer preventive effect of taurine still remains and further studies should investigate the effect of taurine with less than 1 % levels on the prevention of hepatic cancer.

  • PDF

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

Comparative and Interactive Biochemical Effects of Sub-Lethal Concentrations of Cadmium and Lead on Some Tissues of the African Catfish (Clarias gariepinus)

  • Elarabany, Naglaa;Bahnasawy, Mohammed
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.249-255
    • /
    • 2019
  • Cadmium is a strong toxic heavy metal which presents in paints and liquid wastes and causes oxidative stress in fish. On the other hand, lead is widely used for different purposes, e.g. lead pipes, it targets vital organs such as liver and kidney causing biochemical alterations. The present study evaluates the effects of 60 days exposure to Cd and Pb either single or combined together in African catfish. Sixty-four fishes were divided into 3 groups and exposed to $CdCl_2$ (7.02 mg/L) or $PbCl_2$ (69.3 mg/L) or a combination of them along with control group. Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were estimated. Moreover, gill, liver and kidney were assayed for activities of superoxide dismutase (SOD), catalase (CAT) and levels of glutathione (GSH) and malondialdehyde (MDA). Individual exposure showed that both Cd and Pb significantly decreased LDH activity and SOD activity in the kidney. Pb significantly increased G-6-PDH activity and decreased GSH level in the gill. CAT activity in liver and kidney elevated significantly on Cd exposure while lead caused a significant depletion in the liver and significant elevation in the kidney. Both Cd and Pb significantly increased MDA levels in liver and kidney while Pb increased its level in gills. The combined exposure resulted in normalization of LDH, G-6-PDH activity, and CAT activity in liver and kidney as well as GSH level in both tissues and MDA in gill and kidney. The combination increased SOD activity and MDA level in liver and decreased SOD activity in kidney and GSH level in gills. In conclusion, the antioxidant system of African catfish was adversely affected by prolonged exposure to Cd and Pb. The combined exposure caused less damage than individual exposure and returned most parameters to those of controls.

Protective effect of Caryophylli Flos on apoptosis caused by oxidative stress in HaCaT cells (HaCaT 세포의 산화 스트레스로 인한 세포자멸사에서 정향의 보호효과)

  • Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.93-99
    • /
    • 2021
  • Objective : Caryophylli Flos has been used in Korean medicine to relieve vomiting and pains caused by chills that make fluid circulation difficult. This study was designed to investigate the protective effect of ethanol extract of Caryophylli Flos (CF) in hydrogen peroxide (H2O2)-induced apoptotic cell death in human keratinocyte HaCaT cells. Methods : CF was prepared by extracting 200 g of Caryophylli Flos in 2 L of ethanol for 48 h. Cell viability was measured by MTT assay, and the protein expression was monitored by Western blot analysis. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Reactive oxygen species (ROS) was measured using fluorescent dye, and reduced glutathione (GSH) was determined with a colorimetric commercial kit. Results : CF protected HaCaT cells from cell death caused by oxidative stress after H2O2 treatment. H2O2 amplified generation of ROS and induced depletion of GSH, whereas these changes in ROS and GSH were inhibited by GF treatment. In addition, H2O2 resulted in apoptosis as assessed by TUNEL assay and the expression of apoptosis regulator proteins. However, cells treated with CF showed a decrease in TUNEL-positive cells and restored the reduced expression of procaspase-9, -3 and PARP. Conclusion : This study showed cytoprotective effects of CF by anti-apoptotic activity while exerting antioxidative activity in H2O2-treated HaCaT cells. These results suggest that CF could be beneficial in skin damage caused by oxidative stress.

The micosporine-like amino acids-rich aqueous methanol extract of laver (Porphyra yezoensis) inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

  • Kim, Hyunhee;Lee, Yunjung;Han, Taejun;Choi, Eun-Mi
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.592-598
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Increased mass of adipose tissue in obese persons is caused by excessive adipogenesis, which is elaborately controlled by an array of transcription factors. Inhibition of adipogenesis by diverse plant-derived substances has been explored. The aim of the current study was to examine the effects of the aqueous methanol extract of laver (Porphyra yezoensis) on adipogenesis and apoptosis in 3T3-L1 adipocytes and to investigate the mechanism underlying the effect of the laver extract. MATERIALS/METHODS: 3T3-L1 cells were treated with various concentrations of laver extract in differentiation medium. Lipid accumulation, expression of adipogenic proteins, including CCAAT enhancer-binding protein ${\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, fatty acid binding protein 4, and fatty acid synthase, cell viability, apoptosis, and the total content and the ratio of reduced to oxidized forms of glutathione (GSH/GSSG) were analyzed. RESULTS: Treatment with laver extract resulted in a significant decrease in lipid accumulation in 3T3-L1 adipocytes, which showed correlation with a reduction in expression of adipogenic proteins. Treatment with laver extract also resulted in a decrease in the viability of preadipocytes and an increase in the apoptosis of mature adipocytes. Treatment with laver extract led to exacerbated depletion of cellular glutathione and abolished the transient increase in GSH/GSSG ratio during adipogenesis in 3T3-L1 adipocytes. CONCLUSION: Results of our study demonstrated that treatment with the laver extract caused inhibition of adipogenesis, a decrease in proliferation of preadipocytes, and an increase in the apoptosis of mature adipocytes. It appears that these effects were caused by increasing oxidative stress, as demonstrated by the depletion and oxidation of the cellular glutathione pool in the extract-treated adipocytes. Our results suggest that a prooxidant role of laver extract is associated with its antiadipogenic and proapoptotic effects.

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

Antioxidant and Antihemolytic Activities of Ethanol Extracts of Carpesii Fructus and Farfarae Flos (학슬 및 관동화 에탄올 추출물의 항산화 및 항용혈 효과)

  • Kang, Hyun Ju;Kim, Hong-Jun;Jeong, Seung-Il;Kim, Hyeon Soo;Jeon, In Hwa;Mok, Ji Ye;Shim, Jae-Suk;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.25-31
    • /
    • 2013
  • Objectives : To develop a natural antioxidant and anti-hemolytic agents, we investigated the effects of ethanol extracts of Carpesii Fructus and Farfarae Flos. Methods : Aerial parts of Carpesii Fructus and Farfarae Flos were extracted with 80% ethanol. Antioxidant activity of Carpesii Fructus or Farfarae Flos extract was evaluated by employing three different assays, i.e., 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-suphonic acid) diammonium (ABTS) scavenging and reducing power activities. Also, anti-hemolytic activity of Carpesii Fructus or Farfarae Flos extract was determined using [2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH)]-induced hemolysis, glutathione (GSH) depletion and malondialdehyde (MDA) formation in normal rat red blood cells (RBC) or plasma. Results : The extracts obtained from Carpesii Fructus and Farfarae Flos dose-dependently increased the scavenging activity on DPPH- or ABTS-induced radicals and the reducing power activities. Carpesii Fructus and Farfarae Flos were similar to the scavenging activity and the reducing power of butylated hydroxy anisole effect at high concentration ($1,000{\mu}g/mL$). RBC oxidative hemolysis and plasma MDA formation induced by AAPH were significantly suppressed by the extracts of Carpesii Fructus and Farfarae Flos in a dose-dependent manner. Also, Carpesii Fructus and Farfarae Flos extracts prevented the depletion of cystosolic antioxidant GSH in RBCs. Carpesii Fructus generally had better than the free radical scavenging activity, the reducing power and anti-hemolytic effects of Farfarae Flos. Conclusions : These results suggest that Carpesii Fructus and Farfarae Flos may have value as the potential antioxidant and anti-hemolytic medicinal plant.

Hepatoprotective Effect of Forest frog's oviduct oil on Acetaminophen-induced Liver Injury in Mice. (Acetaminophen에 의해 손상된 마우스 간세포에서 합마유의 간세포보호 효과)

  • Lee, Jang-Cheon
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Objectives : The purpose of this study is that the protective effects of habmayou on acetaminophen (AP)-induced hepatotoxicity were investigated in mice. Methods : Before administering AP mice supplied with only water were left alone for 18 hours. after concentration and dissolution in poly ethylglycol AP 400mg per 1kg of mouse weight, we injected AP titrated density with a physiological saline solution into the abdominal cavity of mouse to induce hepatotoxicity. we researched mortality rate and the shape of liver tissue of mouse. Results : Treatment with habmayou (250 mg/kg, p.o.) 0.5 h after AP administration significantly prevented an increase in plasma alanine aminotransferase and aspartate aminotransferase activities and AP-induced hepatic necrosis, and also reduced AP-induced mortality from 46% to 0%. In addition, oral treatment with habmayou significantly prevented AP-induced depletion of glutathione (GSH) contents. However, habmayou treatment, by itself, did not affect hepatic GSH contents. Conclusion : These results show that the hepatoprotective effects of habmayou against AP overdose may be due to its ability to block the bioactivation of AP by regeneration of hepatonecrotic cells.

  • PDF