본 연구에서는 실측 일기상자료 대신 예측 기후평년 값을 적용하여 기후변화와 그에 상응한 벼 작황의 지리적 분포양상을 복원함으로써 지구온난화에 따른 우리나라 벼농사지대의 생산성을 재평가하였다. 기상청 56개 지점 종관자료(일 최고/최저 기온의 월별 평균값)를 1971-2000년 30년 단위로 수집하여 270m 해상도의 수치기후도를 작성하고, 벼논픽셀에 해당되는 기후자료를 추출하였다. 동일한 시군에 속하는 벼논픽셀의 기후자료를 평균함으로써 시군단위의 '벼논맞춤형 기후자료'를 준비하였다. 같은 방법으로 기상연구소에서 제작한 2011-2100년 기간의 3개 평년(2011-2040, 2041-2070, 2071-2100) 기후시나리오에 근거하여 해당 평년의 기후자료를 추정하였다. 농촌진흥청의 정밀토양도로부터 해당 픽셀의 토성과 토심정보를 검색하고 이를 토대로 유효수분 조견표에 의해 토양자료를 준비하였다. 자포니카형 벼의 특성을 갖도록 개조한 벼 생육모형(CERES-Japonica)에 이들 자료를 입력하고 조생종(오대벼), 중생종 (화성벼), 만생종 (동진벼)의 생육을 모의하였다. 시군 공간평균을 기준으로 3품종 모두 가까운 미래(2011-2040년)에는 출수기가 일주일 정도 빨라지고, 먼 미래(2071-2100년)에는 최대 20일 까지 단축될 수 있다. 생리적 성숙기는 3품종 모두 가까운 미래(2011-2040년)에는 15일 정도 단축되고, 먼 미래(2071-2100년)에는 최대 한달까지도 빨라질 수 있어 출수기에 비해 단축정도가 심하다. 평야지 수량의 경우 조생종인 오대벼는 10a당 6-25%, 중생종 화성벼는 3-26%, 만생종 동진벼는 3-25%까지 감소하였다. 하지만 산간지역에서는 발육속도가 빨라지고 수량이 증가하거나 큰 변화가 없는 곳도 많아 온난화조건에서도 지역별 정밀기후 추정과 이에 근거한 최적품종의 선택, 이앙기 및 수확기 등 생육기간의 조절이 온난화 대응기술로서 유효할 것으로 기대된다.
우리나라 벼 수량의 기상반응을 종합적으로 검토하여 벼 수량예측모델을 구축하고자 1985년부터 1999년까지 15년간 수행한 20개 지역의 벼 지역적응시험 자료를 이용하여 기상에 대한 수량반응의 최대경계선(boundary line)분석을 하였으며, 이에 근거하여 수량예측모형을 설정하였다. 1. 벼의 생육기간을 영양생장기, 생식생장기, 등숙기로 구분하고 각 발육단계를 15-20일 간으로 구분하여 각 시기의 기상요소에 대한 수량반응의 최대경계선은 평균기온( $T_{a}$ )과 일조시수( $S_{h}$)에 대해서는 지수함수 f( $T_{a}$ )=$\beta$$_{0}$(1-exp(-$\beta$$_1$/$\times$$T_{a}$ ), f( $S_{h}$)=$\beta$$_{0}$(1-exp(-$\beta$$_1$$\times$$T_{h}$)로 나타났으며 일교차(Tr)는 2차함수 f( $T_{r}$)=$\beta$0(1-( $T_{r}$-$\beta$$_1$)$^2$)로, 이 식에서 상수항 $\beta$$_{0}$를 제거하여 수량에 대한 각 기상요소의 영향도를 0-1로 나타내는 기상지수로 나타내었다. 2. 각 생육시기의 평균기온, 일조시간 및 일교차에 대한 수량반응의 최대경계선이외에 불임에 의한 등숙률 저하와 그에 따른 수량감소를 고려하기 위하여 Uchijima(1976)가 제안한 냉각도일수(cooling degree day)를 출수전 30일간의 생식생장기에 계산하여 이에 대한 수량과 등숙률 반응의 최대경계선을 계산하였는데 냉각도일수가 증가하면 수량이 감소하는 지수함수로 잘 표현되어 기존의 연구들과 같은 결과였다. 3. 기상지수는 벼의 생육기간을 영양생장기, 생식생장기 및 등숙기로 구별하고 각 시기별로 수량 기상지수를 각 기상요소 기상지수를 기하평균하여 산출하였는데 각 시기별 수량기상지수의 수량변이 설명도는 각각 0.383-0.430, 0.460-0.534, 0.4603-0.587로 결정계수는 영양생장기<생식생장기<등숙기의 순으로 컸다. 4. 최대경계선 분석방법을 통하여 얻어진 각 생육시기별 수량기상지수를 기하평균하여 구한 종합수량기상지수와 수량과의 직선회귀식을 구하여 수량예측모형(Model I, II, III)을 작성하였다. Model I, II, III)은 각각 결정계수가 0.6512, 0.6703, 0.6129로 모든 생육단계에 걸쳐서 기간을 15-20일 단위로 세분하여 모든 기간의 수량에 대한 기상지수를 고려하여 전 생육기간의 종합수량기상지수를 산출한 Model II가 기상변화에 따른 수량변이의 설명도가 가장 높았다.
본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.
High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.
Crop status monitoring and yield prediction at higher spatial resolution is a valuable tool in various decision making processes including agricultural policy making by the national and local governments. A prototype crop forecasting system was developed to project the size of rice crop across geographic areas nationwide, based on daily weather pattern. The system consists of crop models and the input data for 1,455 cultivation zone units (the smallest administrative unit of local government in South Korea called "Myun") making up the coterminous South Korea. CERES-rice, a rice crop growth simulation model, was tuned to have genetic characteristics pertinent to domestic cultivars. Daily maximum/minimum temperature, solar radiation, and precipitation surface on 1km by 1km grid spacing were prepared by a spatial interpolation of 63 point observations from the Korea Meteorological Administration network. Spatial mean weather data were derived for each Myun and transformed to the model input format. Soil characteristics and management information at each Myun were available from the Rural Development Administration. The system was applied to the forecasting of national rice production for the recent 3 years (1997 to 1999). The model was run with the past weather data as of September 15 each year, which is about a month earlier than the actual harvest date. Simulated yields of 1,455 Myuns were grouped into 162 counties by acreage-weighted summation to enable the validation, since the official production statistics from the Ministry of Agriculture and Forestry is on the county basis. Forecast yields were less sensitive to the changes in annual climate than the reported yields and there was a relatively weak correlation between the forecast and the reported yields. However, the projected size of rice crop at each county, which was obtained by multiplication of the mean yield with the acreage, was close to the reported production with the $r^2$ values higher than 0.97 in all three years.
Hyeokjin Bak;Ho-young Ban;Sungryul Chang;Dongwon Kwon;Jae-Kyeong Baek;Jung-Il Cho ;Wan-Gyu Sang
한국작물학회:학술대회논문집
/
한국작물학회 2022년도 추계학술대회
/
pp.81-81
/
2022
Recently, many studies on big data based smart farming have been conducted. Research to quantify morphological characteristics using image data from various crops in smart farming is underway. Rice is one of the most important food crops in the world. Much research has been done to predict and model rice crop yield production. The number of productive tillers per plant is one of the important agronomic traits associated with the grain yield of rice crop. However, modeling the basic growth characteristics of rice requires accurate data measurements. The existing method of measurement by humans is not only labor intensive but also prone to human error. Therefore, conversion to digital data is necessary to obtain accurate and phenotyping quickly. In this study, we present an image-based method to predict leaf number and evaluate tiller number of individual rice crop using YOLOv5 deep learning network. We performed using various network of the YOLOv5 model and compared them to determine higher prediction accuracy. We ako performed data augmentation, a method we use to complement small datasets. Based on the number of leaves and tiller actually measured in rice crop, the number of leaves predicted by the model from the image data and the existing regression equation were used to evaluate the number of tillers using the image data.
토지이용과 피복 변화는 기후변화 영향을 증폭시키거나 완화시킬 뿐만 아니라, 기후변화와 함께 환경 변화에 영향을 주는 대표적인 인자들이다. 따라서 기후변화시나리오와 일관된 토지이용 및 피복 변화 시나리오를 사용하는 것은 신뢰성 있는 기후변화 영향평가를 위해 매우 중요하다. 본 연구의 목적은 IPCC의 5차 평가보고서에 제시된 RCP 시나리오의 사회경제 시나리오를 고려한 미래 도시성장을 예측 및 분석하는 것이다. 이를 위해 RCP 4.5와 8.5 시나리오의 스토리라인을 기반으로 토지이용 및 피복 변화 시나리오를 설정하였다. 시나리오별 도시성장량은 지난 25년 간 1인당 도시면적과 GDP를 이용한 이중로그모델에 의해 도출되었다. 또한, 정부에서 제공된 미래 인구수 및 GDP에 의해 미래 도시 수요량이 추정되었다. 이렇게 추정된 수요량은 로지스틱 회귀분석에 의해 작성된 도시성장확률지도에 의해 공간적으로 배분되었다. 그 결과, 도시성장확률지도의 예측 정확도는 89.3~90.3%로 높게 나타났고, RCP 4.5의 예측 정확도가 RCP 8.5 보다 높게 나타났다. 또한, 2020년부터 2050년까지 도시지역은 꾸준한 증가세를 보였고, RCP 8.5 시나리오의 도시면적 증가율이 RCP 4.5 시나리오보다 더 높게 나타났다. 도시지역의 면적 증가는 주로 농지면적 훼손에 의해 발생되는 것으로 예측되었다. 특히, RCP 4.5 시나리오보다 RCP 8.5 시나리오에서 농지뿐만 아니라 산지면적 훼손이 더욱 증가되는 것으로 예측되었다. 이러한 농지와 산지의 면적 감소는 지방도시에 비하여 광역도시에서 더 높게 나타났다. 본 연구의 결과는 향후 기후 및 토지이용 및 피복 변화의 복합적인 쌍방향 영향을 정량적으로 밝힐 수 있는 기초 자료로 활용될 수 있을 것이라 판단된다.
콩재배시 발생하고 있는 기생잡초인 미국실새삼의 발생밀도가 콩 수량에 미치는 영향을 정량화하고 이들 경합에 의한 콩의 피해를 예측하여 콩 재배시 효율적인 잡초방제체계 관리정보를 제공하기 위하여 수행한 연구결과를 요약하면 다음과 같다. 미국실새삼의 발생밀도가 높아지더라도 콩의 생육초기에는 경장과 분지수에는 크게 영향을 미치지 않았으나 생육후기로 갈수록 감소하는 경향을 나타내었고 식물체 건물중, 백립중, 협수에서 유의적으로 감소하는 경향을 보였으며 콩에 미치는 피해정도는 협수> 백립중> 건물중> 분지수> 경장 순으로 영향을 미치는 것을 알 수 있었다. 미국실새삼 경합밀도가 1~48본 $m^{-2}$일때 콩 수량은 각각 80.3~99.7%의 수량감소를 보였으며, 미국실새삼 경합밀도별로 조사된 콩의 수량 자료에 따른 콩 수량 예측 모델은 Y = 274.6783/(1+4.3522X), $R^2=0.999$였으며 50% 수량감소를 유발하는 미국실새삼의 잡초밀도는 $m^2$당 0.23개로 추정되어 콩 재배지에 발생시 심각하게 피해를 줄 잡초로 예상된다. 생산 및 증수비용을 고려한 콩밭 미국실새삼의 경제적 피해한계 밀도 수준은 $m^2$당 0.004개로 예측할 수 있었으며 이보다 발생밀도가 많을 경우에는 잡초를 방제하는 것이 경제적으로 유리할 것으로 사료된다.
이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.
Corporate's survival or bankruptcy has been determined by interaction of macroeconomic environment, industrial dynamic environment and internal process of corporate. This study attempts to examine financial factors' differences that have influence on corporate's survival or bankruptcy before and after foreign exchange crisis in Korea. The first previous empirical study that researched the cause of corporate's survival or bankruptcy in the financial ratios was attempted by Altman in 1968. Recently various survival analysis models have been published. In this paper, Multiple Discriminant Analysis model is used. We divide analytical periods into before and after foreign exchange crisis and sample randomly survival or bankruptcy firms for each period. Independent variables are financial ratios which represent growth, profitability, activity, liquidity and productivity. In conclusion, this paper examines hypothesis as "There are differences of significant financial factors before and after foreign exchange crisis."
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.