• Title/Summary/Keyword: GRF

Search Result 183, Processing Time 0.029 seconds

A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data (지면반력분석기를 이용한 골프 스윙의 분석 평가 방법)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size (배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Seung-Bum;Yoon, Hye-Jin;Lee, Yeon-Hee
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.378-386
    • /
    • 2018
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

The Analysis of GRF during Golf Swing with the Slopes (골프 스윙 시 경사면에 따른 지면 반력 분석에 관한 연구)

  • Moon, G.S.;Choi, H.S.;Hwang, S.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 2007
  • The purpose of this study is to determine the characteristics of ground reaction force(GRF) in golf swing for various slopes of flat lie and uphill lies of 5 and 10 degrees. Five right-handed professional golfers were selected for the experiment and the 7 iron club was used. We used four forceplates to measure GRF and synchronized with the three-dimensional motion analysis system. Results showed that slope did not affect the total time for golf swing, but the time until the impact had a tendency to slightly increase for the uphill lie(p<0.05). The medial-lateral GRF of the right foot increased toward the medial direction during back swing, but less increases were found with the angle of uphill lie(p<0.05). The GRF of the left foot increased rapidly toward the medial direction at the uncocking and the impact during down swing, but decreased with the increase in the angle of uphill lie(p<0.05). The anterior-posterior GRF of both feet showed almost the same for different slopes. With the slopes, the vertical GRF of the right foot increased, but the vertical GRF of left foot decreased(p<0.05). Uphill lies would have negative effect to provide the angular momentum during back swing, restricting pelvic and trunk rotations, and to provide the precise timing and strong power during down swing, limiting movements of body's center of mass. The present study could provide valuable information to quantitatively analyze the dynamics of golf swing. Further study would be required to understand detailed mechanism in golf swing under different conditions.

Comparison of Skiing Time and Vertical Ground Reaction Force between the Short Turn and Basic Parallel Turn during Alpine Skiing

  • Kim, Jin-Hae;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.257-262
    • /
    • 2017
  • Objective: This study aimed to investigate the differences in skiing time and vertical ground reaction force (vGRF) between the basic parallel turn and short turn. Method: Eleven alpine ski instructors (age: $28.73{\pm}4.29yrs$, height: $172.36{\pm}6.30cm$, body mass: $71.45{\pm}9.16kg$, career: $11.09{\pm}2.70yrs$) participated in this study. Each skier was asked to perform a basic parallel turn and short turn on a $16^{\circ}$ groomed slope. A foot pressure measurement system was used to measure the skiing time and vGRF under the three plantar regions (forefoot, midfoot, rearfoot). Results: Skiing time decreased significantly in all three phases during the short turn (p<.05). In the initiation phase, the vGRF showed a greater decrease on the midfoot and rearfoot during the short turn (p<.05). In the steering phase 1, the vGRF showed a greater increase on the forefoot and decreased on the midfoot during the short turn (p<.05). In the steering phase 2, the vGRF showed a greater increase on the forefoot and rearfoot during the short turn (p<.05). Conclusion: Our findings proved that the skiing time and vGRF changed during the short turn. Consequently, we suggest that recreational skiers should decrease the skiing time of the steering phase compared to that of the initiation phase and increase the vGRF on the forefoot and rearfoot in the steering phase.

Overexpression of Brassica rapa GROWTH-REGULATING FACTOR genes in Arabidopsis thaliana increases organ growth by enhancing cell proliferation

  • Hong, Joon Ki;Oh, Seon-Woo;Kim, Jeong Hoe;Lee, Seung Bum;Suh, Eun Jung;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.271-286
    • /
    • 2017
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors containing two conserved QLQ and WRC domains and play critical roles in regulating the growth and development of lateral organs, such as cotyledons, leaves, and flowers. To explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), the researchers isolated seven BrGRFs (BrGRF3-1, 3-2, 5, 7, 8-1, 8-2, and 9) and constructed BrGRF-overexpressing Arabidopsis thaliana plants (BrGRF-OX). BrGRF-OX plants developed larger cotyledons, leaves, and flowers as well as longer roots than the wild type. The increase in size of these organs were due to increases in cell number, but not due to cell size. BrGRF-OX plants also had larger siliques and seeds. Furthermore, BrGRF-OX seeds produced more oil than the wild type. RT-PCR analysis revealed that BrGRFs regulated expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, the data indicates that BrGRFs act as positive regulators of plant growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed oil production.

Analysis of the Ground Reaction Force Parameters According to the Change of Position and Weights of Bag during Downward Stairs Between Dominant and Non-dominant in Upper & lower limbs (계단내리기 시 우세·비우세 체지의 가방착용과 무게변화에 따른 지면반력 파라미터 분석)

  • Hyun, Seung-Hyun;Lee, Ae-Ri;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • The purpose of this study was to analyze of the GRF (ground reaction force) parameters according to the change of positions and weights of bag during downward stairs between dominant and non-dominant in upper & lower limbs. To perform this study, participants were selected 9 healthy women (age: $21.40{\pm}0.94yrs$, height: $166.50{\pm}2.68cm$, body mass: $57.00{\pm}3.61kg$, BMI: $20.53{\pm}1.03kg/m^2$), divided into 2 carrying bag positions (dominant arm/R, non-dominant arm/L) and walked with 3 type of bag weights (0, 3, 5 kg) respectively. One force-plate was used to collect GRF (AMTI OR6-7) data at a sample rate of 1000 Hz. The variables analyzed were consisted of the medial-lateral GRF (Fx), anterior-posterior GRF (Fy), vertical GRF (Fz), impact loading rate and center of pressure (COPx, COPy, COP area, COPy posterior peak time) during downward stairs. 1) The Fx, Fy, Fz, COPx, and COP area of GRF were not statistically significant between dominant leg and non-dominant leg, but non-dominant leg, that is, showed the higher COPy, and showed higher impact loading rate than that dominant leg during downward stairs. 2) In bag wearing to non-dominant arm, Fx, Fz, COPx, COPy, impact loading rate and COP area showed increase tendency according to increase of bag weights. Also, against bag wearing to dominant arm, non-dominant showed different mechanism according to increase of bag weights. The Ground Reaction Force parameters showed different characteristics according to the positions and weights of bag during downward stairs between dominant and non-dominant arm.

Effects of Hallux Valgus Orthoses on Ground Reaction Force Using 3D Motion Analysis in Individuals With Hallux Valgus Deformity

  • Kim, Yong-wook
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.227-232
    • /
    • 2020
  • Background: Hallux valgus (HV) is a foot deformity developed by mediolateral deviation of the first metatarsophalangeal joint. Although various foot-toe orthoses were used to correct the HV angle, verification of the effects of kinetics variables such as ground reaction force (GRF) through three-dimensional (3D) gait analysis according to the various type of orthoses for HV is insufficient. Objects: This study aimed to investigate the effect of soft and hard types of foot and toe orthoses to correct HV deformity on the GRF in individuals with HV using 3D motion analysis system during walking. Methods: Twenty-six subjects participated in the experiment. Participants had HV angle of more than 15° in both feet. Two force platforms were used to obtain 3D GRF data for both feet and a 3D motion capture system with six infrared cameras was used to measure exact stance phase point such as heel strike or toe off period. Total walk trials of each participant were 8 to 10, the walkway length was 6 m. Two-way repeated measures ANOVA was used to determine the effects of each orthosis condition on the various GRF values. Results: The late anteroposterior maximal force and a first vertical peak force of the GRF showed that the hard type orthosis condition significantly increased GRF compared to the other orthosis conditions (p < 0.05). Conclusion: There were significant effects in GRF values when wearing the hard type foot orthosis. However, the hard type foot orthosis was uncomfortable to wear during walking. Therefore, it is necessary to develop a new foot-toe orthosis that can compensate for these disadvantages.

Prediction of Retention Indices of Various Compounds in Gas-Liquid Chromatography (기체-액체 크로마토그래피에서 화합물의 머무름 지표의 예측에 관한 연구)

  • Cha, Gi Won;Lee, Deok Jae
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.108-121
    • /
    • 1994
  • The retention indices of branched-chain alkane, benzene ring, alcohol, amine, ketone, aldehyde and cyclic compounds were measured at 150, 180 and $210^{\circ}C$ on OV-1701 and OV-1 capillary columns. The group retention factors (GRF) of the substituents and the st` ructure retention factors (SRF) of the molecular structure change are derived from the retention indices of reference compounds and series of homologues. The $GRF_f$ equation of `f'th substituent is $GRF_f\;=\;I_{obs}-(100Z + \sum\limits_{i{\neq}f}GRF_i$ + {\sum}$SRF_i$)and the SRFf equation of `f'th molecular structure group is $SRF_f\;=\;I_{obs}-(100Z + {\sum}GRFi + \sum\limits_{i{\neq}f}SRF_i$). The predicted retention indices for those compound were in agreement, within the error of $\pm2$ and $\pm3%$, with the observed values that were obtained using the OV-1701 and OV-1 capillary column, respectively. The $\Delta$ xi of the substituents and $\Delta$ yi of the molecular structure change according to temperature change are derived from the $\Delta'/^{\circ}C$ of reference compounds and series of homologues. The $\Delta$ xi equation of the `f'th substituent is ${\Delta}x_f = {$\Delta}'/^{\circ}C+ \sum\limits_{i{\neq}f}\Delta$ xi + {\sum}{\Delta}yi\;and\;{\Delta}yi$ equation of the `f'th molecular structure group is ${\Delta}y_f$ = {\Delta}'/^{\circ}C+{\sum}{\Delta}xi +\sum\limits_{i{\neq}f}{\Delta}yi$. The predicted $\Delta'/^{\circ}C$ for these compounds were in agreement, within the error of ${\pm}18%$ and 17%, with the observed values that were obtained using the OV-1701 and OV-1 capillary column, respectively.

  • PDF

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Effect of Rehabilitation Exercise for Golfers on the X-factor and Ground Reaction Force according to Phase of the Golf Swing

  • yoon, Junggyu;Cho, Byungyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1706-1710
    • /
    • 2019
  • Background: Despite frequent shoulder injuries of rotator cuff muscle of golfers by the result of overuse and poor swing mechanics, there is little research on shoulder specific rehabilitation exercises for injured rotator cuff muscle and golf swing Objective: To examined the effect of rehabilitation exercise for golfers on the X factor and ground reaction force (GRF) according to phase of the golf swing. Design: Crossover study Methods: The participants were 13 amateur golfers selected for a 4 week rehabilitation exercise for golfers. A rehabilitation exercise for golfers consisting of 5 steps and 4 items (sleeper stretch, full side plank, push up to plank, high plank knee unders) were applied to all participants. A three dimensional motion analyzer and force platform (SMART-E, BTS, Italy) were used to measure the X factor (angle between shoulder and pelvis at top of back swing) and GRF according to phase of the golf swing. All dependent variables were measured before and after exercise. The collected data was analyzed using the paired t test and SPSS 21.0. Results: The GRF had a statistically significant increase in the impact phase and ratio impact/weight after rehabilitation exercise for golfers (p<.05). The X-factor, GRF in top of back swing and finish were no significant differences between before and after exercise (p>.05). Conclusions: These results suggested that rehabilitation exercise for golfers was effective for increasing GRF in the impact phase and ratio impact/weight for amateur golfer.