• Title/Summary/Keyword: GRF(Ground Reaction Force)

검색결과 119건 처리시간 0.025초

Effects of Fatigue Induction on Ground Reaction Force Components, Postural Stability, and Vertical Jump Performance in Taekwondo Athletes

  • Hyun, Seung-Hyun;Kim, Young-Pyo;Ryew, Che-Cheong
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.143-151
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of fatigue induction on ground reaction force (GRF) components, postural stability, and vertical jump performance in Taekwondo athletes. Method: Ten Taekwondo athletes (5 men, 5 women; mean age, $22.30{\pm}2.62years$; mean height, $174.21{\pm}9.20cm$; mean body weight, $67.28{\pm}12.56kg$) participated in this study. Fatigue was induced by a short period of strenuous exercise performed on a motorized treadmill. The analyzed variables included vertical jump performance, static stability (mediolateral [ML], center of pressure [COP], anteroposterior [AP] COP, ${\Delta}COPx$, ${\Delta}COPy$, and COP area), postural stability index values (ML stability index [MLSI], AP stability index [APSI], vertical stability index [VSI], dynamic postural stability index [DPSI]), and GRF components (ML force, AP force, peak vertical force [PVF], and loading rate). To analyze the variables measured in this study, PASW version 22.0 was used to calculate the mean and standard deviation, while a paired t-test was used to evaluate the pre- versus post-fatigue results. Pearson's correlation coefficients among variables were also analyzed. The statistical significance level was set at ${\alpha}$ = .05. Results: Vertical jump performance decreased significantly after the induction of fatigue, while AP COP, ${\Delta}COPx$, COP area, APSI, VSI, and DPSI increased significantly. PVF and loading rate increased significantly after the induction of fatigue, while the postural stability variables (AP COP, ${\Delta}COPy$, COP area, APSI, VSI, DPSI) were similarly correlated with GRF components (PVF, loading rate) after fatigue was achieved (r = .600, $R^2$ = 37%). Conclusion: These results suggest that the induction of fatigue can decrease postural stability and exercise performance of Taekwondo athletes during training and competition sessions.

소프트 골프 스윙 시 스윙 패턴 분석 (The Analysis of Swing Pattern during the Soft Golf Swing)

  • 소하주;유미;곽기영;김성현;김남균;김동욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.151-161
    • /
    • 2010
  • Soft Golf is a newly developed recreational sport in our research team aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. The purpose of this study is to analyze ground reaction force(GRF) and joint angle during soft Golf club and regular golf club swing. The GRF of golf swing was recorded by 3-D motion analysis system and forceplate. The joint angle of golf swing was obtained from computer simulation model. The GRF and joint angle of golf swing are used to analysis of golf swing pattern. The pattern of GRF and joint angle during soft golf club swing was similar to that during regular golf club swing. This result means that soft golf club reduces the risk of injury and has an effect on similar entertainment of regular golf.

Comparison of Skiing Time and Vertical Ground Reaction Force between the Short Turn and Basic Parallel Turn during Alpine Skiing

  • Kim, Jin-Hae;Kim, Joo-Nyeon
    • 한국운동역학회지
    • /
    • 제27권4호
    • /
    • pp.257-262
    • /
    • 2017
  • Objective: This study aimed to investigate the differences in skiing time and vertical ground reaction force (vGRF) between the basic parallel turn and short turn. Method: Eleven alpine ski instructors (age: $28.73{\pm}4.29yrs$, height: $172.36{\pm}6.30cm$, body mass: $71.45{\pm}9.16kg$, career: $11.09{\pm}2.70yrs$) participated in this study. Each skier was asked to perform a basic parallel turn and short turn on a $16^{\circ}$ groomed slope. A foot pressure measurement system was used to measure the skiing time and vGRF under the three plantar regions (forefoot, midfoot, rearfoot). Results: Skiing time decreased significantly in all three phases during the short turn (p<.05). In the initiation phase, the vGRF showed a greater decrease on the midfoot and rearfoot during the short turn (p<.05). In the steering phase 1, the vGRF showed a greater increase on the forefoot and decreased on the midfoot during the short turn (p<.05). In the steering phase 2, the vGRF showed a greater increase on the forefoot and rearfoot during the short turn (p<.05). Conclusion: Our findings proved that the skiing time and vGRF changed during the short turn. Consequently, we suggest that recreational skiers should decrease the skiing time of the steering phase compared to that of the initiation phase and increase the vGRF on the forefoot and rearfoot in the steering phase.

정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교 (Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task)

  • 구동균;권중원
    • PNF and Movement
    • /
    • 제20권1호
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.

지면반력장비의 정밀성, 신뢰도와 장비설치.사용 환경의 영향 (Accuracy and Reliability of Ground Reaction Force System and Effect of Force Platform Mounting and Environment)

  • 박영훈;염창홍;손승;서국웅;김의환;김태완
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Ground reaction force (GRF) measures are one of the most commonly used in biomechanical study. GRF system is very useful educational tool to explain and demonstrate the Newton's law of universal gravitation and laws of motion as well. However, accuracy, intra- and inter- force platform measures' consistency, reliability, noise, and the effect of platform mounting to GRF measures were not clearly viewed. The aim of this study was to examine the above. GRFs of a plastic dummy and two subjects' quiet upright standing were collected at four university laboratories eight force platforms. The types of platforms, analysis programs, and platform set-up were various. Three 100s-trials were conducted with sampling frequency of 100 Hz. First two trials' vertical component of GRFs, Fz, and CoP sway ranges of mid-60s-portion of 100s trials were analyzed by the paired t-tests and one-way ANOVA. Six of eight platforms' 1st and 2nd trial dummy Fz were statistically different (p<.05) and all platforms ICC were poor (<.28). Fz of the two platforms in every four laboratories were statistically different (p<.05). There were white noises and/or very distinctive noises at specific frequency ranges in all Fz measures. 5 Hz low-pass filtering made clear the Fz differences. CoP ranges of dummy were less than 0.5 cm and the best was 0.02 cm. This CoP range finding agrees with previous results suggests the importance of force platform mounting and A/D card resolution.

Immediate Effects of Low-Dye Taping on the Ankle Motion and Ground Reaction Forces in the Pronated Rear-Foot During Gait

  • Kim, Sung-shin;Chung, Jae-yeop
    • 한국전문물리치료학회지
    • /
    • 제23권1호
    • /
    • pp.72-79
    • /
    • 2016
  • Background: Increased foot pronation causes biomedchanical changes at the lower limbs, which may result in musculoskeletal injuries at the proximal joints. Pronation rear-foot leads to plantar fasciitis, Achilles tendonitis, and posterior tibial tendonitis pathologically. According to the recent meta-analysis, They showed that therapeutic adhesive taping is more effective than foot orthoses and motion control footwear, low-Dye (LD) taping has become the most popular method used by physiotherapists. Objects: The purpose of this study was to determine the immediate effects of LD taping results in different ankle motion and ground reaction force (GRF) as before and after applied LD taping on pronated rear-foot during gait. Methods: Twenty-four participants were recruited for this study. The gait data were recorded using an 8-camera motion capture system and two force platforms. At first, the experiments were carried out that participants walked barefoot without LD taping. And then they walked both feet was applied LD taping. Results: The ankle inversion minimum was significantly greater after LD taping than before LD taping (p=.04); however, in the GRF, there were no significant differences in the inversion maximum or total motion of the stance phase (p=.33, p=.07), or in the vertical (p=.33), posterior (p=.22), and lateral (p=.14) peak forces. Conclusion: The application of taping to pronation rear-foot assists in increased ankle inversion.

Relationship between Hallux Valgus Severity and 3D Ground Reaction Force in Individuals with Hallux Valgus Deformity during Gait

  • Kim, Yong-Wook
    • 대한물리의학회지
    • /
    • 제16권3호
    • /
    • pp.21-27
    • /
    • 2021
  • PURPOSE: This study examined the relationship between the severity of a hallux valgus (HV) deformity and the kinetic three-dimensional ground reaction force (GRF) through a motion analysis system with force platforms in individuals with a HV deformity during normal speed walking. METHODS: The participants were 36 adults with a HV deformity. The participants were asked to walk on a 6 m walkway with 40 infrared reflective markers attached to their pelvic and lower extremities. A camera capture system and two force platforms were used to collect kinetic data during gait. A Vicon Nexus and Visual3D motion analysis software were used to calculate the kinetic GRF data. RESULTS: This research showed that the anterior maximal force that occurred in the terminal stance phase during gait had a negative correlation with the HV angle (r = -.762, p < .01). In addition, the HV angle showed a low negative correlation with the second vertical maximal force (r = .346, p < .05) and a moderate positive correlation with the late medial maximal force (r = .641, p < .01). CONCLUSION: A more severe HV deformity results in greater abnormal translation of the plantar pressure and a significantly reduced pressure force under the first metatarsophalangeal joint.

하체서포터 착용 이동 시의 운동역학적 분석 (Biomechanical Analysis on Locomotion with Lower Extremity Supporter)

  • 이경일;홍완기;이철갑
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.215-222
    • /
    • 2011
  • The purpose of this study was to analyze the effects of the use of the lower extremity supporter to ground reaction force(GRF) & EMG in women. Five women participated in the experiment conducted in the study(age: $46.7{\pm}3.5$ yrs, weight: $52.3{\pm}2.2$ kg, lower extremity height: $74.1{\pm}0.9$ cm, knee height: $40.7{\pm}1.4$ cm). The Ground reaction force was measured by AMTI ORG-6 and the Muscle activity of the lower extremity was measured by an 8-channel surface EMG system(Noraxon Myoresearch, USA, 1000Hz). We statistically compared muscle activity and ground reaction force with and without the lower-extremity supporter by one-way repeated ANOVA. The results were as follows. First, the use of the lower extremity supporter affects the ground reaction force along the anterior-posterior axis(Y). Second, the vertical(Z-axis) reaction force on the upper part of the lower extremity supporter increase because of the difference between the interval of vertical movement. Third, the muscle activity of the lateral gastrocnemius and rectus femoris was higher in the upper part of the lower extremity supporter. Further research for example, on a comparative analysis of joint moments, the effects of direct stressor on joints. and the relationship between muscle activity and joint movement, is necessary for a better understanding of the effects of the lower-extremity supporter.

비평탄면에서의 4 족 로봇의 갤로핑 알고리즘 (Control Algorithm for Stable Galloping of Quadruped Robots on Irregular Surfaces)

  • 신창록;김장섭;박종현
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.659-665
    • /
    • 2010
  • 본 논문에서는 4 족 보행로봇의 비평탄면 갤로핑 알고리즘을 제안하였다. 몸체의 균형은 지면접촉순간의 지면반발력에 의해 결정되므로 안정된 보행을 위해 발과 지면과의 접촉력을 제어하였다. 각 발의 지면접촉힘을 제어하기 위해 우선 요구되는 지면접촉힘을 결정하고 지면접촉구간에서 실제 접촉힘과 비교하고 그 차이에 따라 발의 궤적을 수정하게 된다. 요구되는 지면접촉력은 원하고자 하는 각운동량 및 선형운동량의 변화에 따라 결정되며, 각 발에 요구되는 접촉힘으로 퍼지로직에 의해 분배된다. 리커다인을 이용한 동역학 모델 시뮬레이션을 통해 본 논문에서 제안된 방법이 비평탄면에서의 안정적인 보행에 적합함을 검증하였다.

클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화 (Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.