• Title/Summary/Keyword: GREATEM

Search Result 3, Processing Time 0.015 seconds

Laterally Constrained Inversion of GREATEM data (지상 송신원 항공 전자탐사 자료의 횡적 제한 역산)

  • Cho, In-Ky;Jang, Je-Hun;Yi, Myeong-Jong;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.33-42
    • /
    • 2017
  • Recently, the grounded electrical-source airborne transient electromagnetic (GREATEM) system with high power source was introduced to achieve deeper investigation depth and to overcome high noise level. Although the GREATEM is a transient electromagnetic system using a long grounded wire as the transmitter, GREATEM data have been interpreted with 1D earth models because 2D or 3D modeling and inversion of vast airborne data are complicated and expensive to calculate. Generally, 1D inversion is subsequently applied to every survey point and combining 1D images together forms the stitched conductivity-depth image. However, the stitched models often result in abrupt variations in neighboring models. To overcome this problem, laterally constrained inversion (LCI) has been developed in inversion of ATEM data, which can yield layered sections with lateral smooth transitions. In this study, we analysed the GREATEM data through 1D numerical modeling for a curved grounded wire source. Furthermore, we developed a laterally constrained inversion scheme for continuous GREATEM data based on a layered earth model. All 1D data sets and models are inverted as one system, producing layered sections with lateral smooth transitions. Applying the developed LCI technique to the GREATEM data, it was confirmed that the laterally constrained inversion can provide laterally smooth model sections that reflect the layering of the survey area effectively.

One-dimensional Modeling of Airborne Transient Electromagnetic using a Long Grounded-wire Source (지상 송신원 항공 전자 탐사 1차원 모델링)

  • Cho, In-Ky;Kim, Rae-Yeong;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Airborne transient electromagnetic (ATEM) surveying was introduced several decades ago in the mining industry to detect shallow conductive targets. However, conventional ATEM systems have limited depth of investigation because of weak signal strength. Recently, the grounded electrical source airborne transient electromagnetic (GREATEM) system was proposed to increase the depth of investigation. The GREATEM is a semi-airborne transient electromagnetic system because a long grounded wire is used as the transmitter. Traditionally, ATEM sounding data have been interpreted with 1D earth models to save the computing time because modern ATEM systems generally collect large data sets. However, the GREATEM 1D modeling requires numerical integration along the wire, so it takes much more time than the 1D modeling of conventional ATEM. In this study, the adaptive Born forward mapping (ABFM) was applied to the ATEM 1D modeling because the ABFM is incommensurably faster than the ordinary GREATEM 1D modeling. Comparing the results from ordinary and ABFM 1D modeling, it was confirmed that the ABFM can be applied to the 1D modeling of GEATEM.

Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan (접지된 전기 송신원을 이용한 일본 북동부 만다이 산에서의 시간영역 항공 전자탐사)

  • Mogi, Toru;Kusunoki, Ken'ichirou;Kaieda, Hideshi;Ito, Hisatoshi;Jomori, Akira;Jomori, Nobuhide;Yuuki, Youichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Airborne electromagnetics (AEM) is a useful tool for investigating volcanic structures because it can survey large and inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. The Grounded Electrical Source Airborne Transient Electromagnetic(GREATEM)survey system was developed to increase the depth of investigation possible using AEM. The method was tested in a survey at Mount Bandai in north-eastern Japan. Mount Bandai is an andesitic stratovolcano that rises 1819m above sea level. An eruption in July 1888 left a hoof-shaped collapsed wall in its northern crater and avalanche debris at its base. Previous surveys of Mount Bandai allow for comparisons of data on its structure and collapse mechanism as obtained by GREATEM and other geophysical methods. The results show resistive structures in recent volcanic cones and conductive structures in the collapsed-crater area. Conductive areas around the collapsed wall correspond to an alteration zone resulting from hydrothermal activity, supporting the contention that a major cause of the collapse associated with the 1888 eruption was hydrothermal alteration that structurally weakened the interior of the volcanic edifice.