• Title/Summary/Keyword: GRACE monthly gravity field

Search Result 3, Processing Time 0.021 seconds

Analysis of Water Storage Variation in Yangtze River Basin and Three Gorges Dam Area using GRACE Monthly Gravity Field Model (GRACE 월별 중력장모델을 이용한 양자강유역 및 삼협댐 지역 저수량 변화 분석)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha;Jeong, Tae-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.375-384
    • /
    • 2009
  • The GRACE satellite, Launched in March 2002, is applied to research on glacial melt of polar regions, glacial isostatic adjustment(GIA), sea level change, terrestrial water storage(TWS) variation of river basin and large-scale earthquake etc. In this research, the TWS variation of Yangtze river basin from August, 2002 to January, 2009 is analyzed using Level-2 GRACE monthly gravity field model. Particularly, gravity changes of the Three Gorges Dam during the impoundment process in 2003, 2006 and 2008 is observed by estimating equivalent water thickness(EWT). The research results show the distinct annual and seasonal changes of Yangtze river basin, and its amplitude of annual variation is 2.3cm. In addition, we compare the results with water resource statistics and hydrologic observation data to confirm the possibility of research of TWS variation of river basin using GRACE observation data, and also the satellite gravity data is of great help for the research on the movement and periodic changes of river basin.

Spaceborne Gravity Sensors for Continental Hydrology and Geodynamic Studies

  • Shum C. K.;Han Shin-Chan;Braun Alexander
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • The currently operating NASA/GFZ Gravity Recovery and Climate Experiment (GRACE) mission is designed to measure small mass changes over a large spatial scale, including the mapping of continental water storage changes and other geophysical signals in the form of monthly temporal gravity field. The European Space Agency's Gravity field and steady state Ocean Circulation Explorer (GOCE) space gravity gradiometer (SGG) mission is anticipated to determine the mean Earth gravity field with an unprecedented geoid accuracy of several cm (rms) with wavelength of 130km or longer. In this paper, we present a summary of present GRACE studies for the recovery of hydrological signals in the Amazon basin using alternative processing and filtering techniques, and local inversion to enhance the temporal and spatial resolutions by two-folds or better. Simulation studies for the potential GRACE detection of slow deformations due to Nazca-South America plate convergence and glacial isostatic adjustment (GIA) signals show that these signals are at present difficult to detect without long-term data averaging and further improvement of GRACE measurement accuracy.

Estimation of Average Terrestrial Water Storage Changes in the Korean Peninsula Using GRACE Satellite Gravity Data (GRACE 위성 중력자료를 활용한 한반도의 평균 수자원변화량 산정)

  • Lee, Sang-Il;Kim, Joon-Soo;Lee, Sang-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.805-814
    • /
    • 2012
  • Most hydrologic data are obtained by ground observations. New observation methods are needed for some regions to overcome difficulties in accessibility and durability of long-term observation. In 2002, NASA launched twin satellites named GRACE which were designed to measure the gravitational field of the earth. Using the GRACE monthly gravity level-2 data, we calculated terrestrial water storage change (TWSC) of the Korean peninsula in various spatial smoothing radii (0 km, 300 km, 500 km). For the validation of GRACE-based TWSC, we compared it with land-based TWSC which was obtained using the ground observation data: precipitation and evaporation from WAMIS, and runoff from GLDAS. According to the mean square-error test, GRACE-based TWSC best fits the land-based one at 500 km smoothing radius. The variation of the terrestrial water storage in the Korean peninsula turned out to be 0.986 cm/month, which means that appropriate measures should be prepared for sustainable water resources management.