• Title/Summary/Keyword: GRACE위성 중력

Search Result 22, Processing Time 0.016 seconds

여명궤도의 반복지상궤적 유지를 위한 궤도최적화 S/W 개발

  • Yun, Jae-Cheol;Jeong, Ok-Cheol;Lee, Byeong-Seon;Hwang, Yu-Ra
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.26.3-27
    • /
    • 2009
  • 한 기의 영상레이더 위성을 이용하여 동일한 촬영지역에 대해 적절한 기선벡터(Baseline)을 유지하는 두 장(scene)의 영상을 획득하여 그 지역의 정밀 표고차를 추출하는 레이더 간섭계(Interferometry) 임무를 수행하기 위해서는 반복지상궤적을 유지하도록 위성의 궤도를 주기적으로 조정해 주어야 한다. 이 연구에서는 반복지상궤적 유지 정밀도를 극대화시키기 위하여 최적의 기준궤도를 생성하고 이를 유지하기 위한 속도증분 및 궤도 조정 일정을 산출할 수 있는 궤도최적화 S/W 를 개발하였다. 이 연구의 최적 궤도 설계 문제는 다음과 같다. "시작시간 $T_0$에서 초기 접촉궤도 상태벡터 (ECEF 위치 및 속도벡터) $x_0$이고, 지상궤적반복주기 p 이후의 시간 $T_0+p$에서도 초기 접촉궤도 상태벡터와 동일한$x_0$가 되도록 궤도를 유지하려고 할 때, 여명 궤도(dawn-dusk and sun-synchronous orbit)에서 운영되는 위성의 연료소모(또는 속도증분)를 최소화시키는 가상의 궤도조정(maneuver) 횟수, 시기, 크기를 찾아라." 이 연구에서는 궤도최적화 문제를 풀기 위하여 GRACE 중력모델(GGM02C)이 적용된 수치적 방법의 위성궤도예측 알고리즘을 시스템 설계에 적용하였고, 매개변수 최적화 방법 중 구속조건이 있는 비선형 최적화 기법의 하나인 연속 2차 계획법(sequential quadratic programming)을 사용하여 해를 구하였다. 개발된 궤도최적화 S/W의 성능을 분석하기 위하여 고도 550km의 여명궤도를 돌며 지상궤적반복주기가 28일인 영상레이더 위성에 대해 적용하였다. 해석 결과를 통해, 비록 시스템의 비선형이 큼에도 불구하고 최소의 속도증분으로 정밀한 반복지상궤적이 유지됨을 알 수 있었다.

  • PDF

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO (RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현)

  • Eom, Jooyoung;Rim, Hyoungrea
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.147-157
    • /
    • 2020
  • Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.