• Title/Summary/Keyword: GPX4

Search Result 217, Processing Time 0.023 seconds

Hexane Soluble Fraction of Chungpesagan-tang Exhibits Protective Effect against Hypoxia/Reoxygenation-Induced N2a Cell Damage

  • Kim, Kyoung-A;Choi, Hwa-Jung;Kim, Bang-Geul;Park, Young-Ran;Kim, Ji-Sun;Ryu, Jae-Ha;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • Chungpesagan-tang (CST) has been traditionally used in Korea as a therapeutic for cerebral ischemia. To understand the protective mechanism of CST on hypoxia/reoxygenation insults in N2a cells, the cell viability was determined with the treatment of water solution and several solvent fractions of CST. The highest cell viability occurred when the cells were treated with the hexane soluble fraction of CST. Hypoxia/reoxygenation insults were shown to decrease the glutathione peroxidase (GPx) activity and the level of glutathione (GSH) and increase the superoxide dismutase (SOD) activity. However, treatment with hexane soluble fraction of CST ranging from 0.1 ${\mu}g$/ml to 10 ${\mu}g$/ml recovered the activities of GPx and SOD and maintained the levels of MDA and GSH at control levels. While hypoxia/reoxygenation insults induced the activation of ERK in N2a cells, treatment with the hexane soluble fraction of CST inhibited the activation of ERK in a concentration dependent manner. In this study, we were able to demonstrate that the bioactive compounds of CST can be effectively transferred into the hexane soluble fraction, and more importantly that CST exhibits protective effects against hypoxia/reoxygenation insults most likely by recovering redox enzyme activities.

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

Protective Effect of Sachungwhan against CCl4-induced Hepatotoxicity

  • Koo, Ja-Young;Jung, Ki-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.207-215
    • /
    • 2006
  • Sachungwhan reduced hepatotoxicity induced by carbon tetrachloride($CCl_4$). Improved liver function was observed by measuring the activities of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(ALP), blood urea nitrogen(BUN), creatinine(CRE), total cholesterol(TCHO), triglyceride(TG), low density lipoprotein cholesterol(LDL-CHO), high density lipoprotein cholesterol(HDL-CHO), total protein(TP), albumin(ALB) and total bilirubin(BIL) in serum. Hepatic parameters monitored were levels of cholesterol(CHO), triglyceride(TG), malondialdehyde(MDA), content of cytochrome P450(CYP), level of glutathione(GSH), and activities of NADPH-CYP reductase, superoxide dismutase(SOD), catalase(CAT), glutathione S-transferase(GST), glutathione reductase(GR), glutathione peroxidase(GPx). The histopathological examination showed that the treatment of Sachungwhan relieved the ballooning degeneration of hepatocytes which had been generated by $CCl_4$. The results suggested that hepatoprotective effects of Sachungwhan possibly are due to their promising antioxidative activity.

Prophylactic effect of aqueous extract of Sesamum indicum seeds on ethanol-induced toxicity in male rats

  • Oyinloye, B.E.;Nwozo, S.O.;Amah, G.H.;Awoyinka, A.O.;Ojo, O.A.;Ajiboye, B.O.;Tijani, H.A.
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.54-58
    • /
    • 2014
  • The liver is vulnerable to alcohol-related injury because it is the primary site of alcohol metabolism. Additionally, a number of potentially dangerous by-products are generated as alcohol is broken down in the liver. However, dietary supplements may prevent or relieve some of alcohol's deleterious effects. Therefore, this study was conducted to evaluate the prophylactic effect of aqueous extract of Sesamum indicum (SI) on ethanol induced toxicity in rats. Male Wistar albino rats were divided into control, ethanol, pre-treatment, simultaneous and post-treatment groups. In the prophylactic experiment, Sesamum indicum, (200 mg/kg body weight) was administered by oral gavage for 28 days; two hours before, simultaneously with or two hours after ethanol exposure. Toxicity was induced by administering 45% ethanol (4.8 g/kg bw) by oral gavage. Lipid peroxidation (TBARS) and reduced glutathione (GSH) levels and catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and gluthathione-S-transferase (GST) activities were then determined in the liver, serum triglyceride (TG) levels, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were monitored and histological examination was carried out. The results revealed that ethanol administration led to significant elevation of TBARS level while depleting in the level of GSH as well as CAT, GPx, SOD and GST activities. Similarly, TG level and ALT and AST activities were elevated. The SI pre-treated group significantly inhibited TBARS, restored GSH level, enhanced CAT, GPx, SOD and GST activities and significantly decreased the elevated level of serum TG, ALT and AST activities. SI treatment (simultaneously with ethanol) exhibited similar effects to those of the SI pre-treated groups, while the SI post-treated group did not show the same protection as the Pre-treated group. S. indicum possesses antioxidant and hepatoprotective properties, that eliminate the deleterious effects of toxic metabolites of ethanol.

Effects of Aralia canescens and Phellodendron amurense Extracts on Streptozotocin Induced Diabetic ICR Mice (Streptozotocin으로 당뇨를 유도한 생쥐의 간과 체장에서 황백피와 두릅나무 추출물이 지질과 산화물 생성과 글루타티온 의존성 효소의 활성에 미치는 효과)

  • 서소영;김해리
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.689-696
    • /
    • 1997
  • The effects of Aralia canescens and Phellodendron amurense(AP) extracts on the experimental diabetes in ICR mice were investigated. 96male ICR mice were induced diabetes mellitus by intrape-ritoneal streptozotocin injection(75mg/kg B.W.) and divided into two injection groups which are 5 day injection and 10 day injection group. Then, each injection group was subdivided into 8 groups of 6 animals repspectively. CIC served as control and CI1, CI2 and CI3 were treated with 50, 150, 250mg/kg B.W. of AP extracts powder in 0.9% NaCl solution. Animals of groups DIC, DI1, DI2 and DI3 were strepto-zotocin-induced diabetes. DIC served as diabetic control and the rest groups received 50, 150, 250mg/kg B.W of AP extracts powder in saline solution respectively. The body weight, liver and kiney weight changes and blood levels of glucose, cholesterol and triglyceride were measured. Thiobarbituric acid reactive substance(TBARS), and glutathione reductase(GR) and glutathione peroxidase(GPx) activities were also measured for determining antioxidant effects. AP extracts increased the body weight in diabetic groups. The liver and kidney weight/100g B.W. in DIC group were greater than those of normal ICR group but after AP extracts injection, liver and kidney weight were decreased significantly. These effects were more efficient at 10 days injection group. The total, LDL, VLDL cholesterol and triglyceride levels were significantly higher in DIC group and the extent of decrement responded to AP injection dose. The contents of TBARS and antioxidant enzyme activities were relatively decreased after AP extracts injection. These results suggest that the intraperitoneally administered AP extracts may have not only hypoglycemic effect but act as antioxidants by reducing lipid peroxidation.

  • PDF

Effects of Dietary Zinc Supplements on the Antioxidant Indicators and the Expression of Zinc Transport Genes in Korean Native Chicks (한국 재래닭에서 아연 보충급여가 항산화 지표 및 아연 운반 유전자 발현에 미치는 영향)

  • Jeon, Dong-Gyung;Kim, Min-Jeong;Yoon, Il-Gyu;Ahn, Ho-Sung;Sohn, Sea-Hwan;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.3
    • /
    • pp.161-171
    • /
    • 2019
  • Four-week-old male Korean native chicks (KNC) were assigned to 3 groups with 6 replicates (8 birds/replicate) in each group: a basal diet (CON, 100 ppm of Zn), basal diet fortified with 50 ppm of Zn with zinc oxide (ZnO), or basal diet fortified with 50 ppm of Zn with Zn-methionine (ZnM). Immediately after a 4-week-feeding trial, 6 birds per group were used to evaluate the effects of zinc supplements on antioxidant indicators and the mRNA expression of zinc transport genes. The nitrogen components, lipid peroxidation, and total antioxidant status in blood were not influenced by Zn fortified diets. However, the ZnM group showed a significant (P<0.05) increase in uric acid levels than those in the ZnO group. In the small intestine, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and malondialdehyde (MDA) level were unaffected by zinc supplements. The activity of glutathione S-transferase (GST) was significantly (P<0.05) enhanced by Zn-methionine supplementation. In the liver, the activity of GST was significantly (P<0.05) increased by Zn-methionine supplement without affecting SOD, GPX, and MDA levels. With respect to the mRNA expression of zinc transport genes, the ZnM group displayed a strong tendency for increases in intestinal ZnT-1 (P=0.09) and ZnT-5 (P=0.06) levels, compared to those in the CON group. Moreover, the ZnM group showed a tendency (P=0.10) for up-regulation of hepatic metallothionein mRNA as compared with the CON group. In conclusion, the Zn-fortified diet with 50 ppm of Zn-methionine helped to improve GST activity and Zn transport gene expression in the small intestine or liver of KNC.

Protective Effect of Curcumin and Aqueous Extract of Onchengyeum on CCI4-induced Hepatotoxicity

  • SEUNG Keum Ran;JUNG Ki Hwa
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.232-239
    • /
    • 2005
  • An aqueous extract of oriental herbal composition named Onchengyeum and curcumin, an antioxidant isolated from turmeric (Curcuma Zonga L.) reduced hepatotoxicity induced by carbon tetrachloride ($CCI_4$). Improved liver function was observed by measuring the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (CRE), total cholesterol (T-CHO), triglyceride (TG), low density lipoprotein cholesterol (LDL-CHO), high density lipoprotein cholesterol (HDL-CHO), total protein (TP), albumin (ALB) and total bilirubin (BIL) in serum. Hepatic parameters monitored were levels of cholesterol (CHO), triglyceride (TG), and malondialdehyde (MDA) and activities of cytochrome P450 (CYP), NADPH-CYP reductase, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx). The histopathological examination showed that the treatment of Onchengyeum and curcumin relieved the ballooning degeneration of hepatocytes which had been generated by $CCI_4$. The results suggested that hepatoprotective effects of Onchengyeum and curcumin possibly are due to their promising antioxidative activity.

Effects of Rhynchosia molubilis Saponin on Hepatotoxicity and Pathology (간독성과 병리학적인 면에서 노두 사포닌의 효과)

  • Ha Bae-Jin
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.186-191
    • /
    • 2006
  • This study was carried out to investigate the effects of Rhynchosia molubilis saponin on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity. Sprague-Dawley rats were intraperitoneally administered the Rhynchosia molubilis saponin at 100 mg/kg every day for two weeks, then $CCl_4$ (3.3 ml/kg) was injected into rats. 12 hours later, they were anesthesized with ether and dissected. Rhynchosia molubilis saponin-administered group showed 59.92% and 62.28% of inhibitory effects on aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities compared to $CCl_4$-treated group (p<0.05). Malonedialdehyde (MDA) levels of Rhynchosia molubilis Saponin-administered and $CCl_4$-treated (RSC) group in liver homogenate and mitochondria were significantly inhibited to 61.83%, 81.11 %, respectively, compared to $CCl_4$-treated group (p<0.05). Superoxide dismutase (SOD) activities of RSC group in liver homogenate and mitochondria were significantly inhibited to 66.53%, 31.04%, respectively, compared to $CCl_4$-treated group (p<0.05). GPx activities of RSC group in liver homogenate and mitochondria were significantly inhibited to 72.74%, 72.68%, respectively, compared to $CCl_4$-treated group (p<0.05). The histological examinations showed that the liver cell necrosis and centrilobular congestion aggregation induced by $CCl_4$ were dearly eliminated by the administration of Rhynchosia molubilis saponin. These results suggest that Rhynchosia molubilis saponin could have the protective effects against hepatotoxicity.

Effects of Soshiho-tang on Hydrogen Peroxide-induced Oxidative Damage in Hepatocytes (과산화수소로 유도된 산화성 간세포 손상에 대한 소시호탕(小柴胡湯)의 효과)

  • Seo, Sang-Hee;Oh, Su-Young;Lee, Ji-Seon;Cho, Won-Kyung;Kim, Tae-Soo;Ma, Jin-Yeul
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Objectives : The aim of this study was to investigate the hepatoprotective effect of Soshiho-tang (SSH) in mouse primary liver cells against hydrogen peroxide ($H_2O_2$)-induced oxidative stress. We also elucidated the molecular mechanism of hepatoprotective effect by SSH. Methods : Cell viability, level of ALT, AST and LDH, intracellular ROS level, mRNA expression and activity of antioxidant enzymes were used to evaluate hepatoprotection of SSH against $H_2O_2$. Target gene expressions were analyzed by real-time PCR. Results : Pre-treatment with SSH for 1 hour prevented cytotoxicity against $H_2O_2$. $H_2O_2$-induced ROS level decreased under SSH pre-treatment. mRNA expression of GPx and SOD increased in SSH-treated cells. In addition, HSP72 and HSP40 gene expression were elevated under SSH-treatment. Conclusions : These results indicate that SSH protects mouse primary liver cells from $H_2O_2$-induced oxidative injury. This hepatoprotective activity of SSH is mediated by decreasing intracellular ROS and increasing antioxidant enzyme expression (GPx and SOD) and stress response protein (HSP72 and HSP40).

Effects of Salicornia Herbacea L. Supplementation on Antioxidative Enzyme Activities in Streptozotocin-Induced Diabetic Rats (함초 첨가식이가 당뇨유발 흰쥐의 항산화효소 활성에 미치는 영향)

  • Kim, Myung-Wha
    • Journal of Nutrition and Health
    • /
    • v.41 no.7
    • /
    • pp.583-593
    • /
    • 2008
  • This study was designed to examine the effects of Salicornia herbacea L. (glasswort: GW) on hepatic antioxidative enzyme activities in diabetic rats. Diabetes mellitus was induced in male Sprague-Dawley rats weighing 200-220g by an injection of streptozotocin (STZ) dissolved in a citrate buffer into the tail vein at a dose of 45 mg/kg of body weight. Sprague-Dawley rats were fed an AIN-93 recommended diet and the experimental groups were fed a modified diet containing 10% and 20% of glasswort powder for 4 weeks. The experimental groups were divided into 6 groups which consisted of normal (N)-control group, N-GW 10% and N-GW 20% treated groups, STZ-control, STZ-GW 10% and STZ-GW 20% treated groups. The activities of Xanthine oxidase (XOD), glutathione- S-transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD) and CAT (CAT) were measured in the homogenates of liver. The activity of CAT was lower in the supplementary group with glasswort compare to the STZcontrol group but it was not significantly different. The activity of SOD was not significant in all of experimental groups. The activity of GR was significantly increased in the normal supplementary group with glasswort, and GPX activity was significantly increased in STZ-GW 10% group compare to the STZ-control group. The activity of XOD was significantly decreased in the all of supplementary groups with glasswort. The activity of GST was significantly increased in the N-GW 20% group and it was significantly decreased in the STZ-GW 20% group. These results show that the supplementation of glasswort may have favorable influence on antioxidative status in diabetic rats and it may be useful for the diabetic complications as functional food.