• Title/Summary/Keyword: GPSR

Search Result 39, Processing Time 0.027 seconds

Routing Algorithm for Urban Vehicular Ad hoc Networks (도시환경 VANET을 고려한 라우팅 알고리즘)

  • Jung, Hyun-Jae;Lee, Su-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.2
    • /
    • pp.157-161
    • /
    • 2010
  • Vehicular Ad-hoc NETworks (VANETs) suffer from frequent network disconnections due to obstacles such as buildings even in urban environments with high density of traffic. Thus, in this paper, we propose a routing algorithm that finds optimal end-to-end paths in terms of both traffic density and distance in the urban VANET and selects the next hop with the minimum distance, while maintaining the minimum hop counts over the path. The simulation results show that the proposed algorithm achieves higher throughput and smaller end-to-end delay than Greedy Perimeter Stateless Routing (GPSR) with message carrying.

A Study on Improving Weighted DGRP-based Routing Protocol in VANETs (VANET에서 WDGRP-based 라우팅 프로토콜 개선에 관한 연구)

  • Jeong, Jong-Beom;Min, Sung-Gi;Oh, Sang-Seock
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.395-398
    • /
    • 2013
  • 최근 VANET 라우팅 프로토콜에 관한 연구가 증가하는 이유는 차량에 통신장비를 장착하여 차량 간 또는 기간통신망 간에 통신수요 증가가 가까운 미래에 활성화 될 것으로 예상되어 국제적으로 현실에 적용이 가능한 VANET 라우팅 프로토콜에 관심과 중요성이 높아지고 있다. VANET 라우팅 프로토콜에서 주요한 성능을 결정하는 사항은 패킷처리율, 패킷전송지연 그리고 오버헤드이다. 이러한 조건을 만족시키는 VANET 라우팅 프로토콜로 DGRP(Directional Greedy Routing Protocol)이 있다. DGRP는 위치기반 라우팅 프로토콜로 GPSR보다 높은 패킷처리율, 낮은 패킷전송지연과 오버헤드를 갖는다. 이러한 장점을 통해서 본 논문에서는 우리는 DGRP를 개선한 WDGRP를 제안하고자 한다. WDGRP는 기존의 VANET 라우팅의 프로토콜의 장점을 포함하고 있으며 알고리즘을 개선함으로써 DGRP보다 높은 성능을 갖는다. 본 논문에서는 기존의 라우팅 프로토콜인 GPSR, DGRP 라우팅 프로토콜을 WDGRP와 함께 각각 성능비교를 하였다. 그 결과 WDGRP은 다른 라우팅 프로토콜보다 패킷전달율이 증가하였고 오버헤드와 패킷전송지연은 감소하였다.

Traffic Congestion Management on Urban Roads using Vehicular Ad-hoc Network-based V2V and V2I Communications (차량 애드혹 네트워크 기반 V2V와 V2I 통신을 사용한 시내 도로에서의 교통 체증 관리)

  • Ryu, Minwoo;Cha, Si-Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2022
  • The nodes constituting the vehicle ad hoc network (VANET) are vehicles moving along the road and road side units (RSUs) installed around the road. The vehicle ad hoc network is used to collect the status, speed, and location information of vehicles driving on the road, and to communicate with vehicles, vehicles, and RSUs. Today, as the number of vehicles continues to increase, urban roads are suffering from traffic jams, which cause various problems such as time, fuel, and the environment. In this paper, we propose a method to solve traffic congestion problems on urban roads and demonstrate that the method can be applied to solve traffic congestion problems through performance evaluation using two typical protocols of vehicle ad hoc networks, AODV and GPSR. The performance evaluation used ns-2 simulator, and the average number of traffic jams and the waiting time due to the average traffic congestion were measured. Through this, we demonstrate that the vehicle ad hoc-based traffic congestion management technique proposed in this paper can be applied to urban roads in smart cities.

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V.;Hicks, Stephen J.;Hajjar, Jerome F.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.293-309
    • /
    • 2022
  • Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

Implementation of ACS-based Wireless Sensor Network Routing Algorithm using Location Information (위치 정보를 이용한 개미 집단 시스템 기반의 무선 센서 네트워크 라우팅 알고리즘 구현)

  • Jeon, Hye-Kyoung;Han, Seung-Jin;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • One of the objectives of research on routing methods in wireless sensor networks is maximizing the energy life of sensor nodes that have limited energy. In this study, we tried to even energy use in a wireless sensor network by giving a weight to the transition probability of ACS(Ant Colony System), which is commonly used to find the optimal path, based on the amount of energy in a sensor and the distance of the sensor from the sink. The proposed method showed improvement by 46.80% on the average in energy utility in comparison with representative routing method GPSR (Greedy Perimeter Stateless Routing), and its residual energy after operation for a specific length of time was 6.7% more on the average than that in ACS.

Ad Hoc Routing Method Based on Betweenness Centrality and Location Information for Unmanned Ground System Networks (지상 무인로봇체계 네트워크를 위한 매개 중심도와 위치정보 기반 Ad Hoc 라우팅)

  • Ahn, Hyochun;Yim, Jinhyuk;Ko, Young-Bae;Choi, HyungSeok;Kwon, DaeHoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.441-450
    • /
    • 2016
  • Wireless multi-hop communication is one of the key technologies to operate Unmanned Ground System (UGS) networks efficiently. Conventionally a lot of routing protocol has been developed and studied for multi-hop networks like Mobile Ad-hoc Network (MANET). However, the routing protocol for the unique environment of the UGS requires further studies, since conventional routing protocols cannot be used itself for UGS networks. In this paper, we propose the Betweenness Centrality based Geographic Routing (BCGR) which considers the main function of UGS. BCGR utilizes expanded ego betweenness centrality, mobility and location information error, respectively. We have conducted a simulation study for evaluating the performance of the BCGR using ns-3, and our simulation results show that BCGR outperforms the conventional routing protocols such as AODV and GPSR in terms of end-to-end transmission reliability, throughput and delay.

Grid-based Location Service Spot scheme for optimized routing path on VANET (VANET 환경에서의 경로 최적화를 위한 그리드 기반 위치 정보 서비스 스팟 기법)

  • Kim, Jong-Hyun;Kim, Kee-Cheon;Jung, Woo-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.76-90
    • /
    • 2010
  • Location Service is required in position-based routing for VANET to provide position information. We propose Grid-based Location service spot(GLSS) scheme for optimized routing path to improve accessibility and load balance in location service. Specific area is defined as Location service spot(LSS) on each grid in this scheme, and all nodes in the grid geocast its location update message and location request message to each LSS. Location request messages are flooded throughout LSSs, location reply messages establish optimized route from the source grid to the destination grid. We evaluated GLSS which establishes optimized route on the grid comparing GPSR in consideration of road condition and geographical features.

An Efficient Routing Algorithm for Solving the Lost Link Problem of Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 링크 단절 문제 해결을 위한 효율적인 라우팅 알고리즘)

  • Lim, Wan-Seon;Kim, Sok-Hyong;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1075-1082
    • /
    • 2008
  • A greedy forwarding algorithm is one of the most suitable solutions for routing in vehicular ad-hoc networks. Compared to conventional routing protocols for mobile ad-hoc networks, greedy forwarding based routing protocols maintain only local information of neighbors instead of per-destination routing entries, and thus they show better performance in highly-mobile vehicular ad-hoc networks. With greedy forwarding, each node learns its geographical position and periodically broadcasts a beacon message including its position information. Based on the position information, each node selects a neighbor node located closest to the destination node as the next forwarder. One of the most serious problems in greedy forwarding is the lost link problem due to the mobility of nodes. In this paper, we propose a new algorithm to reduce the lost link problem. The proposed algorithm aims to find an efficient and stable routing path by taking account of the position of neighbors and the last beacon reception time. Our simulation results show that the proposed algorithm outperforms the legacy greedy algorithm and its variants.

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.

Void Less Geo-Routing for Wireless Sensor Networks

  • Joshi, Gyanendra Prasad;Lee, Chae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.433-435
    • /
    • 2007
  • Geographic wireless sensor networks use position information for Greedy routing. Greedy routing works well in dense network where as in sparse network it may fail and require the use of recovery algorithms. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costlier for resource constrained position based wireless sensor type networks. In the present work, we propose a Void Avoidance Algorithm (VAA); a novel idea based on virtual distance upgrading that allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forward packet using greedy routing only without recovery algorithm. In VAA, the stuck node upgrades distance unless it finds next hop node which is closer to the destination than itself. VAA guarantees the packet delivery if there is a topologically valid path exists. NS-2 is used to evaluate the performance and correctness of VAA and compared the performance with GPSR. Simulation results show that our proposed algorithm achieves higher delivery ratio, lower energy consumption and efficient path.

  • PDF