• Title/Summary/Keyword: GPS.

Search Result 5,490, Processing Time 0.031 seconds

Implementation of Real-Time Software GPS Receiver and Performance Analysis (실시간 소프트웨어 GPS 수신기 구현 및 성능 분석)

  • Kwag, Heui-Sam;Ko, Sun-Jun;Won, Jong-Hoon;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2350-2352
    • /
    • 2004
  • This paper presents the implementation-tation of the real-time software GPS Receiver based on FFT and FLL assisted PLL tracking algorithm. The FFT(fast fourier transform) based GPS si-gnal acquisition scheme provides a fast TTFF(time to first fix) performance. The tracking based on FLL assisted PLL enables tracking of GPS signal in a high dynamic environment. The designed software GPS receiver uses the indexing method for generating replica carrier to reduce computation load. The performance of the implemented GPS receiver is evaluated using high-dynamic simulated data from a simulator and real static data.

  • PDF

Analysis of Coarse Acquisition Code Generation Algorithm in GPS System (GPS 시스템의 C/A 부호 생성 알고리듬의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, the coarse acquisition code (C/A code), for civil navigation, of the ranging codes for Global Positioning System (GPS) is studied, simulated and analyzed by using Matlab. We can see with the simulation results that the correctness of the method and feasibility, which is at simulation platform to further study on the real environment of GPS signal, can be confirmed. With using this results, we think, the complexity of tracking the satellite signal environment can be captured, and the performance of satellite receiver will be improved.

Sensor Fusion of GPS/INS/Baroaltimeter Using Wavelet Analysis (GPS/INS/기압고도계의 웨이블릿 센서융합 기법)

  • Kim, Seong-Pil;Kim, Eung-Tai;Seong, Kie-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1232-1237
    • /
    • 2008
  • This paper introduces an application of wavelet analysis to the sensor fusion of GPS/INS/baroaltimeter. Using wavelet analysis the baro-inertial altitude is decomposed into the low frequency content and the high frequency content. The high frequency components, 'details', represent the perturbed altitude change from the long time trend. GPS altitude is also broken down by a wavelet decomposition. The low frequency components, 'approximations', of the decomposed signal address the long-term trend of altitude. It is proposed that the final altitude be determined as the sum of both the details of the baro-inertial altitude and the approximations of GPS altitude. Then the final altitude exclude long-term baro-inertial errors and short-term GPS errors. Finally, it is shown from the test results that the proposed method produces continuous and sensitive altitude successfully.

The Development of Driving Algorithm for an Unmanned Vehicle with Multiple-GPS's (다중 GPS를 이용한 무인자동차의 주행 알고리즘 개발)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • A navigation system is one of the important components of an unmanned ground vehicle (UGV). A GPS receiver collects data signals transmitted by (Earth orbiting) satellites. However, these data signals may contain many errors resulting misinformation and depending on one's position (environment), reception may be impossible. The proposed self-driven algorithm uses three low-cost GPS in order to minimize errors of existing inexpensive single GPS's driving algorithm. By using reliable final data, which is analyzed and combined from each of three GPS's received data signals, gathering a vehicle's steering performance information and its current pin-point position is improved even with error containing signals or from a place where signal gathering is impossible. The purpose of this thesis is to explain navigation system algorithm using multiple GPS and compass sensor and prove the algorithm through experiments.

Estimation of vehicle parameters using GPS/INS (GPS/INS 를 이용한 차량의 파라미터 추정)

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1524-1529
    • /
    • 2003
  • In this paper deals with a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using GPS velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement and cornering stiffness estimates are compared with the theoretical predictions. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

Slope Analysis of Mountain Trail Using Mobile GPS (휴대용 GPS에 의한 등산로 경사분석)

  • Lee, Hye-Suk;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Mountain trails play an important role in the daily life and health of the citizens, and also are major areas for recreation operators strive to balance the needs of pedestrian with the needs of wildlife and health improvement. In this view point, this research aims at analyzing the slope of mountain trails using mobile GPS and suggesting the suitable path to citizens for improving health. The result shows that the trail slope analysis by using mobile GPS could be effectively evaluated the degree of walk difficulty.

  • PDF

Performance Testing of Integrated Strapdwon INS and GPS

  • Lee, Sang-Joog;Yoo, Chang-Sun;Shim, Yo-Han;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.67-77
    • /
    • 2001
  • In recent navigation system, the profitable solution is to integrate the GPS and Stapdwon INS (SDINS) system and its integration allows compensation for shortcomings of each system. This paper describes the hardware preparation and presents the test results obtained from the automobile test of the developed system. The automobile tests was conducted with two kinds of inertial sensors and GPS receivers : short range and middle range test, to verify and evaluate the performance of the integrated navigation system. The reference of position is given by the Differential GPS(DGPS) which has cm-level accuracy to compare the accuracy of system. Kalman filtering is used for integrating GPS and SDINS and this filter effectively allows the long-term stability of GPS to correct and decrease the time deviation error of SDINS.

  • PDF

Development of Correction Algorithm for Integrated Strapdown INS/GPS by using Kalman Filter

  • Lee, Sang-Jong;Naumenko, C.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2001
  • The Global Positioning System(GPS) and the Strapdown Inertial Navigation System(SDINS) techniques have been widely utilized in many applications. However each system has its own weak point when used in a stand-alone mode. SDINS suffers from fast error accumulation dependent on an operating time while GPS has problem of cycle slips and just provides low update rate. The best solution is to integrate the GPS and SDINS system and its integration allows compensation for each shortcomings. This paper, first, is to define and derive error equations of integrated SDINS/GPS system before it will be applied on a real hardware system with gyro, accelerometer and GPS receiver. Second, the accuracy, availability and performance of this mechanization are verified on the simulation study.

  • PDF

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

A STUDY ON CONTINUOUS POSITIONING METHOD USING INTERLOCKING RFID AND GPS

  • Song, Woo-Seok;Lee, Jung-Ho;Bea, Hwan-Sung;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.564-567
    • /
    • 2007
  • GPS(Global Positioning System) data has a high accuracy at outdoor positioning generally, but its accuracy decreases in the urban areas with dense buildings. Moreover insufficient number of satelllites prevent us GPS positioning at inside of buildings. To complement these shortcomings of GPS, RFID(Radio Frequency IDentification) has been studied on indoor positioning parts. In Ubiquitous environment, LBS(Location Based Service) which can be used anytime and anywhere is an essential component. We use kalman filter to estimate the real location in GPS and RFID handover area. This study's purpose is to make a continuous positioning system using interlocking RFID and GPS.

  • PDF