• Title/Summary/Keyword: GPS tropospheric delay

Search Result 44, Processing Time 0.051 seconds

Effects of Tropospheric Mapping Functions on GPS Data Processing

  • Won, Ji-Hye;Park, Kwan-Dong;Ha, Ji-Hyun;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In processing space geodetic data, mapping functions are used to convert the tropospheric signal delay along the zenith direction to the line of sight direction. In this study, we compared three mapping functions by evaluating their effects on the tropospheric signal delay and position estimates in GPS data processing. The three mapping functions tested are Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and Global Mapping Function (GMF). The tropospheric delay and height estimates from VMF1 and GMF are compared with the ones obtained with NMF. The differences among mapping functions show annual signals with the maximum occurring in February or August. To quantitatively estimate the discrepancies among mapping functions, we calculated the maximum difference and the amplitude using a curve fitting technique. Both the maximum difference and amplitude have high correlations with the latitude of the site. Also, the smallest difference was found around $30^{\circ}N$ and the amplitudes increase toward higher latitudes. In the height estimates, the choice of mapping function did not significantly affect the vertical velocity estimate, and the precision of height estimates was improved at most of the sites when VMF1 or GMF was used instead of NMF.

Comparison of Tropospheric Mapping Functions on Altitude in Time Transfer of GPS code (GPS 코드 시각 전달에서 고도에 의한 대류층 매핑 함수 비교)

  • Yu, Dong-hui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.71-73
    • /
    • 2013
  • This paper introduce the process of time transfer from GPS satellites and analyze the results the tropospheric delay estimation results according to Chao mapping function and Niell mapping function, respectively.

  • PDF

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Estimation of Tropospheric Water Vapor using GPS Observation (GPS를 이용한 대류권의 수증기량 추정에 관한 연구)

  • 송동섭;윤홍식;조재명
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2002
  • As the GPS signals propagate from the GPS satellites to the receivers on the ground, they are delayed by the atmosphere. The tropospheric delay consists of two components. The hydrostatic (or "dry") component that is dependent on the dry air gasses in the atmosphere and accounts for approximately 90% of the delay. And the "wet" component that depends on the moisture content of the atmosphere and accounts for the remaining effect of the delay. The Zenith Hydrostatic Delay (ZHD) can be calculated from the local surface pressure. The Total Zenith Delay (TZD) will be estimated and the wet component extracted later. Integrated water Vapor (IWV) gives the total amount of water vapor that a signal from the zenith direction would encounter. Precipitable Water Vapor (PWV) is the IWV scaled by the density of water. The quality of this PWV has been verified by comparison with radiosonde data(at Osan). We processed data for JULY 2 and JULY 14, 1999 from four stations(Cheju, Kwangju, Suwon, Daegu). We found the coincidence between PWV of the estimations using GPS and PWV of pressing the radiosonde data. The average of the difference between PWV using GPS and PWV using radiosonde was 3.77 mm(Std. = $\pm$0.013 mm) and 2.70 mm(Std. = $\pm$0.0011 mm) at Suwon & Kwangju.

Analysis of GPS-derived Total Zenith Delay Estimates for Climate Studies in the Korean Peninsula

  • Park Kwan-Dong;Ha Jihyun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.703-706
    • /
    • 2004
  • Tropospheric parameters, in the form of Total Zenith Delay (TZD) corrections, were estimated with the current GPS network of Korea. We estimated the TZD using the Korea Astronomy Observatory GPS Network of nine permanent stations. About four years of data were processed to get the continuous time series of the TZD. The longest time series is obtained from the site DAEJ, which has been in operation for about 10 years. We analyzed the seasonal and annual signals in the TZD estimates at DAEJ and spatial correlations among eight sites.

  • PDF

Generation of Grid Maps of GPS Signal Delays in the Troposphere and Analysis of Relative Point Positioning Accuracy Enhancement (GPS 신호의 대류권 지연정보 격자지도 생성과 상대측위 정확도 향상 평가)

  • Kim, Dusik;Won, Jihye;Son, Eun-Seong;Park, Kwan-Dong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.825-832
    • /
    • 2012
  • GPS signal delay that caused by dry gases and water vapor in troposphere is a main error source of GPS point positioning and it must be eliminated for precise point positioning. In this paper, we implemented to generate tropospheric delay grid map over the Korean Peninsula based on post-processing method by using the GPS permanent station network in order to determine the availability of tropospheric delay generation algorithm. GIPSY 5.0 was used for GPS data process and nationwide AWS observation network was used to calculate the amount of dry delay and wet delay separately. As the result of grid map's accuracy analysis, the RMSE between grid map data and GPS site data was 0.7mm in ZHD, 7.6mm in ZWD and 8.5mm in ZTD. After grid map accuracy analysis, we applied the calculated tropospheric delay grid map to single frequency relative positioning algorithm and analyzed the positioning accuracy enhancement. As the result, positioning accuracy was improved up to 36% in case of relative positioning of Suwon(SUWN) and Mokpo(MKPO), that the baseline distance is about 297km.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Analysis of Tropospheric Zenith Path Delay of GPS Code Based Precise Time Comparison Technique (GPS 코드 기반 정밀시각비교기법의 대류층 천정지연모델 분석)

  • Yu, Dong-Hui;Yang, Sung-Hoon;Do, Jae-Chul;Lee, Chang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.61-69
    • /
    • 2012
  • This paper shows results of the precise time comparison technique based on GPS code transfer in order to determine the UTC(Universal Time Coordinated) and generate TAI(International Atomic Time). CGGTTS(CCTF Group on GNSS Time Transfer Standards) which is generated by GPS timing receivers is used as the international standard format. For geodetic receivers which provide RINEX formats as GPS time transfer results, ROB(Royal Observatory of Belgium) developed a conversion program, r2cggtts, and have distributed the program to timing laboratories participating in TAI link all over the world. Timing laboratories generate the time comparison results of GPS code transfer by the program and send them to BIPM(Bureau International des Poids et Mesures) periodically. In this paper, we introduce the delay features generated while GPS code is transferred and the calibration methods of them. Then, we introduce the tropospheric delay and analyze the results of Saastamoinen model and NATO(North Atlantic Treaty organization) model. Saastamoinen model is the representative tropospheric zenith path delay model and NATO model is applied to the legacy r2cggtts program.