• Title/Summary/Keyword: GPS time

Search Result 1,607, Processing Time 0.031 seconds

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

Home Range Analysis of Great Tit (Parus major) before and after Fledging in an Urban Park (도시공원에 번식하는 박새의 이소 전후 어미 행동권 분석)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • Urban parks provide a variety of ecosystem services and are an important means of providing positive functions to urban ecosystems. Recently, various studies on wildlifes in urban parks have been conducted. However, there is a lack of research on habitat use in urban parks at important times such as before and after fledging in bird ecology. This study analyzed habitat use and home-range before and after fledging on Cheongsa park, a neighborhood park located in Cheonan city. An artificial nest was set up to check and capture great tit in fledging time. One female was captured and attached to the NTQB-2 (0.4g) radio transmitter, the location was tracked using SIKA Radio Tracking Receiver, hand-held three element Yagi antenna and GPS. Location information was recorded for 10 minutes for 3 hours each morning and afternoon for 12 days from May 17 to May 31, 2019. As a result, the home-range of the target species was 1.776 ha (MCP) and the core area was 499 ㎡ (KD 50%). The average daily home-range was 0.513 ha for the entire period, 0.688 ha before fledging, 0.339 ha after fledging based on MCP. The bird moved about 29.9 m on average and moved up to 131.7 m. For the most of the time, the great tit stayed inside the park, but the bird also used small green spaces such as street trees, tree flower beds, and green areas of unused lands. The results of this study could be applied to the study of habitat use and the greenery management policy of the urban park considering wild birds.

Analysis for Changes of Mode Choice Behavior from Providing Real-time Schedule for Public Transportation by Smartphone Application (스마트폰 애플리케이션을 이용한 대중교통 운행정보 제공에 따른 통행자 수단선택 행태변화 분석)

  • Choi, Sung-Taek;Rho, Jeong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.60-69
    • /
    • 2012
  • Public Transport Information Service which use smartphone Apps has received attention as the way of solution that reduced transport problem. Smartphone can offer real-time information because of a LBS(Location Based Service) system. This study try to find out which factor affect mode choice ratio of public transport, especially smartphone Apps. The result shows that rising oil price, traffic congestion, public information service with smartphone apps, BIS(Bus Information System) factors get 0.39, 0.27, 0.18, 0.16 scores with paired comparison. Younger and student respondents prefer smart phone public information service. Decision Tree shows that the most important decision factor is smartphone information service factor.

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

A Review on Smart Two Wheeler Helmet with Safety System Using Internet of Things

  • Ilanchezhian, P;Shanmugaraja, P;Thangaraj, K;Aldo Stalin, JL;Vasanthi, S
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.11-16
    • /
    • 2021
  • At the present time, the number of accidents has enlarged speedily and in country like India per day there are about 204 accidents occurred. Accidents of two-wheeler compose a foremost segment of every accident and it can be true for the reason that two-wheelers like bikes not able to produce as many as security measurements normally incorporated in cars, truks and bus etc. General main rootcost of the two-wheeler accidents happen only when people community not remember to wearing a device helmet and during the driving time feels like sleep condition, alcohol disbursement, many of the drivers doesn't know heavy vehicles like Loory and buses approaching into very closer to their two wheelers, contravention of two wheelers in traffic rules and regulations. Let's overcome the above situations; our important objective is to develop an intelligent system device that can successfully facilitate in avoidance of every kind of problems. Suppose any of the above stated situations occurs, at that moment how system device identify and represents the commanders and community, and finally the stated situation be able to taken care of straight away without any further delay. A smart intelligent helmet system is a defending head covering used by rider for making bike riding safer than earlier. This is finished by incorporating sophisticated features like detecting the usage of helmet by the rider, connected Bluetooth module in helmet. In order to maintain the temperature inside the helmet device we need to include CPU fan module inside the device. RF based helmet prevents road accidents and identify whether people community is not using a component helmet or used. Main responsibility of the system is to detect accidents by vibration sensors, accelerometers and also with the help of modules global positioning system and global system for mobile commnicaiton module. A wireless communication device used to discover the accident area site location and likewise notifying the two-wheeler drived people's relatives and short message text information passed to the positioned hospitals.

Comparative Analysis of Travel Behaviors, Activity Range, and Life Patterns of Children and Parents in Elementary School Neighborhood - Focused on the Neighborhood around Sin-gok Elementary School in Gangseo-gu - (초등학교 근린 내 어린이와 학부모의 통행특성과 활동범위, 생활패턴 비교 분석 - 서울시 강서구 신곡초등학교 일대를 대상으로 -)

  • Chae, Han-Hee;Lee, Kyung-Hwan;Ko, Eun-Jeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2020
  • Recently, due to the child-friendly city project being conducted by UNICEF, the movement to create a child-friendly cities has been actively promoted by the South Korean government. However, due to the lack of specific physical plans to improve the basic rights of children in the city, the project has been mainly implemented for educational and institutional projects. In this study, we investigated the activities of children and parents living in elementary school neighborhoods. Based on our investigation, we attempted to generate the desired results that can be referred to by physical planners looking to make changes to school neighborhoods by comparing and analyzing children and parents' activity range and life patterns in the neighborhood. The GPS and traffic log surveys were conducted as the primary research methods. The results of this study are as follows: First, both children and parents are most likely to walk in their neighborhoods. In addition, the use of private cars and school vehicles was high, but the use of public transportation was low. Second, the longer parents and children stayed together, the wider the range of their activities. Third, children who spent a lot of time with parents were more likely to have diverse life patterns than children who did not spend a lot of time with parents. Fourth, parents who live in elementary school neighborhoods frequently used commercial facilities and cultural centers around the school. Therefore, it is important to construct facilities around the school for parent-use.

The Mitigating Effects of Seaward Dune Reinforcement Against Coastal Erosion in Dasa-ri, Chungcheongnam-do, South Korea (해안사구 모래보강을 통한 해안침식 저감 효과 - 충청남도 다사리 사구를 사례로 -)

  • Kong, Hak-Yang;Park, Sung-Min;Shin, Young Kyu;Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • Coastal sand dunes have been regarded as natural defenses to protect hinterland from disasters such as storm surge and typhoons. However, many dunes are not well-deserved in South Korea because of imprudent land development or inappropriate measures after coastal erosion. Lately, beach nourishment and dune reinforcement are emphasized as the effective and environmentally sustainable solution for the coastal protection. They are regarded good strategies to keep landscapes for a time, with little side effects. However, there is little knowledge on the construction methods including proper design and time plans for the best results.In addition, the effects of dune reinforcement in the field should be tested.In thisstudy, we performed sand filling in an eroded dune scarp and surveyed topographic changes in the beach-dune system, which is located along Dasa-ri coast, Chungnam Province, South Korea. Using a network RTK-GPS and drone-based aerial photographs, we analyzed the temporal and spatial changes in the area, before and after the reinforcement. As a result, the dune reinforcement seems to be helpful to mitigates the coastal erosion and to prevent the coastline retreat at least for one year.

The flight Test Procedures For Agricultural Drones Based on 5G Communication (5G 통신기반 농업용 드론 비행시험 절차)

  • Byeong Gyu Gang
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2023
  • This study aims to determine how agricultural drones are operated for flight tests using a 5G communication in order to carry out a mission such as sensing agricultural crop healthy status with special cameras. Drones were installed with a multi-spectral and IR camera to capture images of crop status in separate altitudes with different speeds. A multi-spectral camera can capture crop image data using five different particular wavelengths with a built-in GPS so that captured images with synchronized time could provide better accuracy of position and altitude during the flight time. Captured thermal videos are then sent to a ground server to be analyzed via 5G communication. Thus, combining two cameras can result in better visualization of vegetation areas. The flight test verified how agricultural drones equipped with special cameras could collect image data in vegetation areas.

Personal Information Protection Recommendation System using Deep Learning in POI (POI 에서 딥러닝을 이용한 개인정보 보호 추천 시스템)

  • Peng, Sony;Park, Doo-Soon;Kim, Daeyoung;Yang, Yixuan;Lee, HyeJung;Siet, Sophort
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.377-379
    • /
    • 2022
  • POI refers to the point of Interest in Location-Based Social Networks (LBSNs). With the rapid development of mobile devices, GPS, and the Web (web2.0 and 3.0), LBSNs have attracted many users to share their information, physical location (real-time location), and interesting places. The tremendous demand of the user in LBSNs leads the recommendation systems (RSs) to become more widespread attention. Recommendation systems assist users in discovering interesting local attractions or facilities and help social network service (SNS) providers based on user locations. Therefore, it plays a vital role in LBSNs, namely POI recommendation system. In the machine learning model, most of the training data are stored in the centralized data storage, so information that belongs to the user will store in the centralized storage, and users may face privacy issues. Moreover, sharing the information may have safety concerns because of uploading or sharing their real-time location with others through social network media. According to the privacy concern issue, the paper proposes a recommendation model to prevent user privacy and eliminate traditional RS problems such as cold-start and data sparsity.

AUTOMATIC DATA COLLECTION TO IMPROVE READY-MIXED CONCRETE DELIVERY PERFORMANCE

  • Pan Hao;Sangwon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.187-194
    • /
    • 2011
  • Optimizing truck dispatching-intervals is imperative in ready mixed concrete (RMC) delivery process. Intervals shorter than optimal may induce queuing of idle trucks at a construction site, resulting in a long delivery cycle time. On the other hand, intervals longer than optimal can trigger work discontinuity due to a lack of available trucks where required. Therefore, the RMC delivery process should be systematically scheduled in order to minimize the occurrence of waiting trucks as well as guarantee work continuity. However, it is challenging to find optimal intervals, particularly in urban areas, due to variations in both traffic conditions and concrete placement rates at the site. Truck dispatching intervals are usually determined based on the concrete plant managers' intuitive judgments, without sufficient and reliable information regarding traffic and site conditions. Accordingly, the RMC delivery process often experiences inefficiency and/or work discontinuity. Automatic data collection (ADC) techniques (e.g., RFID or GPS) can be effective tools to assist plant managers in finding optimal dispatching intervals, thereby enhancing delivery performance. However, quantitative evidence of the extent of performance improvement has rarely been reported to data, and this is a central reason for a general reluctance within the industry to embrace these techniques, despite their potential benefits. To address this issue, this research reports on the development of a discrete event simulation model and its application to a large-scale building project in Abu Dhabi. The simulation results indicate that ADC techniques can reduce the truck idle time at site by 57% and also enhance the pouring continuity in the RMC delivery process.

  • PDF