• 제목/요약/키워드: GPS signal tracking loop

검색결과 25건 처리시간 0.021초

GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계 (Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers)

  • 최현호;임덕원;이상욱;김지훈;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

칼만필터 기반의 통합 GPS 수신기 추적루프 설계 (Design of Combined GPS Signal Tracking Loop based on Kalman Filter)

  • 송종화;지규인;김광훈
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.939-947
    • /
    • 2008
  • The GPS tracking loop consists of three parts in general: discriminator, loop filter and DCO (Digitally Controlled Oscillator). The loop filter is the main part of the tracking loop designed to ensure a good tracking performance. Generally, the loop filter is designed using classical PI(Proportional Integral) control. Although the carrier Doppler and code Doppler are generated by the same relative movement between the satellite and the user, often, the loop filters for each tracking loop are designed separately and independently. Sometimes, they are used in a combined manner such as carrier aided code tracking, FLL assisted PLL, etc. For better GPS signal tracking, we need to design the FLL/PLL/DLL altogether optimally. The purpose of this paper is to design a GPS receiver tracking loop based on the Kalman filter in a combined manner. Also, the proposed GPS receiver tracking loop is compared with a conventional tracking loop in terms of the transfer function and the DCO input. This paper shows that conventional tracking loop is equal to the Kalman filter based tracking loop.

INS 속도 정보를 사용한 GPS 반송파 추적 루프의 성능 향상 (Performance Improvement of INS Velocity-aided GPS Carrier Tracking Loop)

  • 김정원;이상정;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents performance improvement of the INS velocity-adided GPS carier tracking loop. To this end, INS velocity-aided GPS carrier tracking loop was modeled as a feedfoward and a feedback loop system. In the phase tracking loop, it was shown that the tracking error caused by the dynamic motion of the vehicle can be compensated with the aiding of the INS information irrespective of the loop order and bandwidth. However, the signal trcking error increases as the INS error increases. It was also shown that in order to remove the tracking error caused by INS bias error, more than or equal to 2nd order PLL should be used. Experiments were carried out and the experimental results were compared with the analysis results.

Carrier Tracking Loop using the Adaptive Two-Stage Kalman Filter for High Dynamic Situations

  • Kim, Kwang-Hoon;Jee, Gyu-In;Song, Jong-Hwa
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.948-953
    • /
    • 2008
  • In high dynamic situations, the GPS carrier tracking loop requires a wide bandwidth to track a carrier signal because the Doppler frequency changes more rapidly with time. However, a wide bandwidth allows noises within the bandwidth of the tracking loop to pass through the loop filter. As these noises are used in the numerical controlled oscillator(NCO), the carrier tracking loop of a GPS receiver shows a degraded performance in high dynamic situations. To solve this problem, an adaptive two-stage Kalman filter, which offers the NCO a less noisy phase error, can be used. This filter is based on a carrier phase dynamic model and can adapt to an incomplete dynamic model and a quickly changed Doppler frequency. The performance of the proposed tracking loop is verified by several simulations.

GPS L1/갈릴레오 E1 복합신호처리를 통한 위치정확도 향상 연구 (A Study on Enhanced Accuracy using GPS L1 and Galileo E1 Signal Combined Processing)

  • 신천식;이상욱;윤동원
    • 한국위성정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.68-74
    • /
    • 2011
  • 본 논문은 GPS L1신호와 갈릴레오 E1 신호를 복합 신호처리를 통한 위치정확도 성능향상 연구결과를 제시하였다. GNSS 수신기에서의 신호획득 및 추적과정의 성능 향상시키기 위해 복수개의 누적기, 판별기 및 루프 필터 모듈을 적용하였고, 소프트웨어 측정 결과와 하드웨어 측정결과를 성능 비교하였다, 또한 추적과정에 대한 성능비교는 정확도와 민감도 측면에서만 다루었으며 갈릴레오 E1 신호처리를 위한 DLL(Delay Lock Loop) 판별기는 power early late 타입을 적용하여 성능을 검증하였다.

Anti-interference Methods using Vector-based GPS Receiver Mode

  • Viet, Hoan Nguyen;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.545-557
    • /
    • 2018
  • The Global Positioning System (GPS) has become popular and widely used in many fields from military to civilian applications. However, GPS signals are suffered from interference due to its weak signal over wireless channel. There are many types of interference, such as jamming, blocking multipath, and spoofing, which can mislead the operation of GPS receiver. In this paper, vector-based tracking loop model with integrity check is proposed to detect and mitigate the harmful effect of interference on GPS receiver operation. The suggested methods are implemented in the tracking loop of GPS receiver. As a first method, integrity check with carrier-to-noise ratio (C/No) monitoring technique is applied to detect the presence of interference and prevent contaminated channels out of tracking channels to calculate position. As a second method, a vector-based tracking loop using Extended Kalman Filter with adaptive noise covariance according to C/No monitoring results. The proposed methods have been implemented on simulated dataset. The results demonstrates that the suggested methods significantly mitigate interference of Additive White Gaussian Noise (AWGN) and improve position calculation by 44%.

회전체의 GPS 신호 영향 분석 (Analysis of Effect of the Spinning Vehicle on the GPS Signal)

  • 조종철;김정원;황동환;이상정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.189-191
    • /
    • 2006
  • This paper analyzes effect of the spinning vehicle on the GPS signal. In rapid spinning vehicles such as missiles and space rockets, carrier phase and frequency depend on the roll rate of the vehicle. It induces phase and frequency modulation caused by the roll rate. The modulated phase and frequency increase dynamic stress error of the tracking loop. Even though higher order tracking loop can remove dynamic stress error, the dynamic stress error can not be remove in this case. In order to analyze the effect of the spinning vehicle on the GPS signal, the experiments are carried out. The experiment results show the modulation of the carrier frequency and phase caused by the roll rate of the spinning vehicle.

  • PDF

Adaptive Bandwidth Algorithm for Optimal Signal Tracking of DGPS Reference Receivers

  • Park, Sang-Hyun;Cho, Deuk-Jae;Seo, Ki-Yeol;Suh, Sang-Hyun
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.763-769
    • /
    • 2007
  • A narrow loop noise bandwidth method is desirable to reduce the error of raw measurements due to the thermal noise. However, it degrades the performance of GPS initial synchronization such as mean acquisition time. And it restricts the loop noise bandwidth to a fixed value determined by the lower bound of the allowable range of carrier-to-noise power ratio, so that it is difficult to optimally track GPS signal. In order to make up for the weak points of the fixed-type narrow loop noise bandwidth method and simultaneously minimize the error of code and carrier measurements, this paper proposes a stepwise-type adaptive bandwidth algorithm for DGPS reference receivers. In this paper, it is shown that the proposed adaptive bandwidth algorithm can provide more accurate measurements than those of the fixed-type narrow loop noise bandwidth method, in view of analyzing the simulation results between two signal tracking algorithms. This paper also carries out sensitivity analysis of the proposed adaptive bandwidth algorithm due to the estimation uncertainty of carrier-to-noise power ratio. Finally the analysis results are verified by the experiment using GPS simulator.

회전하는 지능 포탄의 GPS/INS 통합 항법 시스템 설계 (GPS/INS Integrated Navigation Systems Design for Spinning Smart Munitions)

  • 김정원;강희원;정호철;황동환;이상정;이태규;송기원
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.615-621
    • /
    • 2009
  • Since GPS receivers and INS algorithms do not work properly in the spinning vehicles due to change of the GPS signal and excess of the measurement limitation of the gyroscope, conventional GPS/INS integrated navigation systems do not provide accurate navigation outputs. This paper proposes a design method for GPS/INS integrated navigation systems of spinning vehicles. A special GPS receiver with a signal tracking loop for changed GPS signal caused by spinning and an INS with a roll estimation method are configured and the conventional integration filter is combined. The proposed method was verified through comparison of the navigation results. The result of the proposed method for the spinning vehicle was similar to that of the conventional navigation system without spinning.

LQG 기반 벡터 추적 루프를 적용한 GPS 수신기의 위치 및 측정치 성능 분석 (Position and Measurement Performance Analysis of GPS Receiver applied LQG based Vector Tracking Loop)

  • 박민혁;전상훈;김종원;기창돈;서승우;장재규;소형민;박준표
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.43-49
    • /
    • 2017
  • 일반적인 위성 항법 장치 수신기는 루프 필터 기반의 스칼라 추적 루프를 통해 신호 추적이 이루어진다. 본 논문에서는 루프 필터를 LQG 제어기로, 스칼라 추적 루프를 벡터 추적 루프로 대체한 LQG 기반 벡터 추적 루프의 성능을 정확성과 강건성 측면에서 살펴보았다. 정확성을 판단하기 위해서, 일반적인 루프 필터 기반 스칼라 추적 루프 대비 LQG 기반 스칼라 추적 루프의 측정치 추정 오차가 60% 이상 향상됨을 확인하였다. 다음으로 LQG 기반 스칼라 추적 루프 대비 LQG 기반 벡터 추적 루프의 측정치 추정 오차의 성능 향상과 위성 개수 증가에 따른 위치/속도 추정 오차 성능 향상을 확인함으로써 정확성을 확인하였다. 마지막으로 4초 동안의 30 dB-Hz의 일시적 신호 감쇄 상황에서 루프 필터 기반의 스칼라 추적 루프는 신호 추적에 실패하는 반면, LQG 기반 벡터 추적 루프는 연속적으로 위치/속도, 측정치 추정이 가능함을 확인함으로써 강건성을 확인하였다.