• Title/Summary/Keyword: GPS sensor

Search Result 703, Processing Time 0.024 seconds

Considerations of Automatic Passenger Counting System using Infrared Sensors at doorway in Overseas Railway Transit (적외선 센서를 이용한 자동 승객 계수 시스템에 대한 고찰)

  • Kim, Jin-Seok;Gwak, Ho-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.418-423
    • /
    • 2009
  • Unlike domestic railway transportation system in which majority of station are equipped with gate access controller and ticket office, it has been a very common practice in overseas railway transit or railway station that they use a pressure door mat, infrared-sensors or CCTV cameras so as to automatically determine the number of passenger onboard and alight and to reflect the information to their business (i.e., deployment of vehicles and human resources). The data collected by the automatic passenger counting (APC) system provides methods how to obtain the information about the number of passenger using the vehicles on the basis of date, time and stop(station) which enables large-scaled transit company to create profits through effective vehicle deployment and management of their employees. This paper addresses the basic features of the automatic passenger counting system using infrared sensor and describes those of the extended APC system in conjunction with wireless technologies such as GPS, WLAN or Cellular network.

  • PDF

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

A implement Android OS-based black-box system in the vehicle (안드로이드 OS 기반의 차량용 블랙박스 시스템 구현)

  • Song, Min-Seob;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.483-486
    • /
    • 2011
  • Recently, large and small vehicle accidents due to human life and property due to loss of function similar to that used on the plane with a black box mounted on the vehicle by the driver of the vehicle in order to analyze the cause of the accident vehicle you are using a black box. The black box used in the existing operating system, unlike the Android OS portability is good compared to other OS support an open platform for the development of additional costs or proven, which includes many libraries need to use any external libraries there are no advantages. In addition, the existing black box on the incident can not be sent automatically to report an accident notification has a problem. In this paper, another advantage of the OS used in a black box with an Android-based acceleration sensor on the test board GPS module and smart phones using the information, and incident detection capability to send a message to the specified number of black boxes with was implemented.

  • PDF

Design and Implementation of Event Notification System for Location-and RFID-based Logistics Environment (위치 및 RFID 기반의 물류 환경을 위한 이벤트 통지 시스템의 설계 및 구현)

  • Lee, Yong-Mi;Nam, Kwang-Woo;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.599-608
    • /
    • 2008
  • Advanced wireless network and sensor technologies are capable of collecting information such as temperature, humidity, weight, and location about objects at real time in logistics area. Besides, users want to be notified of contextual information about interest of objects whenever they want it and wherever they want it. To satisfy these requirements, applications should collect and analyze contextual information at real time, and must support a service that can notify it to wanted users. Event-based service is one of the way to satisfy these requirement of users. In this paper, we design an event notification system focused on location- and RFID-based logistics area. To do this, we present XML-based event expression model, ECA-based profile definition model, and an algorithm that has high scalability by distinguishing event filtering in two steps. Based on these designs, our implemented system can apply to not only logistics area but also intelligent traffic control system based on RFID or GPS devices.

Accuracy Analysis of the Orbit Modeling with Various GCP Configurations and Unknown Parameter Sets (기준점 위치와 미지수 조합에 따른 궤도모델링의 정확도 분석)

  • Kim, Dong-Wook;Kim, Hyun-Suk;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, we analyzed the accuracy of orbit modeling with various control point configurations and adjustment unknown parameter sets. We used 152 GCP points acquired from GPS surveying, which were distributed from Choon-chun to Nha-ju along 420km in distance. For orbit modeling, seven adjustment parameter sets were chosen to include parameters for satellite position, velocity and attitude angles at different degree of freedom. Firstly we determined the location of model point in seven configurations. Secondly we estimated model parameters for each parameter set and for each GCP configurations. Finally we applied the model to reference check points and analyzed its accuracy. We were able to find the unknown parameter set that produce best orbit modeling performance regardless of the configuration of model points.

The Efficient Method for Video Data Streaming via NMEA-0183 (NMEA-0183 기반 영상데이터의 효율적인 스트리밍 기법)

  • Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1300-1305
    • /
    • 2020
  • Due to the simplicity of communication structure using RS-232 and RS-422, the majority ships have still adapted on these communication interfaces and have constructed their own communication network in the ship. NMEA-0183 is the one of standards for BNWAS(Bridge Navigational Watch Alarm System) and currently being used in many countries. BNWAS utilises diverse sensor devices, GPS, AIS and so on for monitoring the status of ships and their deployments and environmental information(temperature, humidity, wind speed/direction, water temperature/current etc…). This paper proposes the use of any image sensors in NMEA-0183 environment and verifies possibility with certain video qualities through the experiment results. Furthermore the paper gathers videos and monitors the change of their qualities depending on the number of NMEA messages on RS-232 communication link. Finally we make conclusion that our proposal is sufficiently appropriate for ship monitoring system in the NMEA-0183.

Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics (동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템)

  • Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.183-189
    • /
    • 2021
  • In recent years, active research has been devoted toward developing a monitoring system using ambient vibration data in order to quantitatively determine the deterioration occurring in a structure over a long period of time. This study developed a low-cost edge computing system that detects the abnormalities in structures by utilizing the dynamic characteristics acquired from the structure over the long term for ensemble learning. The system hardware consists of the Raspberry Pi, an accelerometer, an inclinometer, a GPS RTK module, and a LoRa communication module. The structural abnormality detection afforded by the ensemble learning using dynamic characteristics is verified using a laboratory-scale structure model vibration experiment. A real-time distributed processing algorithm with dynamic feature extraction based on the experiment is installed on the Raspberry Pi. Based on the stable operation of installed systems at the Community Service Center, Pohang-si, Korea, the validity of the developed system was verified on-site.

Development of Augmented Reality Character System based on Markerless Tracking (마커리스 트래킹 기반 증강현실 캐릭터 시스템 개발)

  • Hyun, Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1275-1282
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, resulting in low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

Design of Inertial Navigation System/Celestial Navigation System Navigation System for Horizontal Position Estimation and Performance Comparison Between Loosely and Tightly Coupled Approach (수평 위치정보 추정을 위한 관성/천측 항법시스템 설계 및 약결합/강결합 방식의 성능 비교)

  • Kiduck Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.58-71
    • /
    • 2023
  • This paper describes a navigation system design for horizontal position estimation using inertial measurement sensors and celestial navigation. In space, stars are widely spread objects in the celestial sphere and have been used mainly to obtain attitude information through star observation. However, it is also possible to obtain information about the horizontal position with the altitude of the star. It is called celestial navigation which is the same principle that former navigators used to locate themselves while sailing on the sea. In particular, in deep space where GPS is not available, it is important to obtain information on the location by making use of stars that are relatively easy to observe. Therefore, we introduce a navigation system that can estimate horizontal position and design two types of systems, loosely coupled and tightly coupled depending on how the measurements are utilized. It is intended to help in the future design of navigation system using celestial navigation by simulation studies that not only verify whether the system correctly estimates horizontal position but also comparing the performance of loosely and tightly coupled methods.

AR-Based Character Tracking Navigation System Development (AR기반 캐릭터 트래킹 네비게이션 시스템 개발)

  • Lee, SeokHwan;Lee, JungKeum;Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.325-332
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, which results low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.