• Title/Summary/Keyword: GPS satellite propagator

Search Result 3, Processing Time 0.019 seconds

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

Solar Radiation Pressure Model Comparison for GPS Satellites (GPS 궤도의 태양풍 모델 비교)

  • Yu, Seon-Gyeong;Kim, Gang-Ho;Kee, Chang-don;Heo, Mun-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.585-590
    • /
    • 2018
  • GPS satellite orbits could be estimated precisely using GPS dynamics as well as GPS observations. Most of the perturbations are available to be generated using satellite position, velocity, well known model equations and coefficients. However, who wants to calculate solar radiation pressure (SRP) should choose a SRP model and estimate the coefficients of a SRP model. The accuracy of SRP model depends on the model characteristics. Therefore this paper has estimated coefficients of SRP models using CODE precise orbit product and compared the accuracy of orbit propagator depending on SRP model. The results show that the extended CODE orbit model (ECOM) and the reduced ECOM achieved cm level fitting orbit for the CODE 1-day orbit. Also orbit propagation model without SRP model consideration could get tens of meter orbits compared to CODE orbits.

Performance Improvement of Real Time On-board Orbit Determination using High Precision Orbit Propagator (고정밀 섭동모델을 이용한 실시간 On-board 궤도 결정 성능 향상)

  • Kim, Eun-Hyouek;Lee, Byung-Hoon;Park, Sung-Baek;Jin, Hyeun-Pil;Lee, Hyun-Woo;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.781-788
    • /
    • 2016
  • In this paper, a real-time on-board orbit determination algorithm using the high precise orbit propagator is suggested and its performance is analyzed. Orbit determination algorithm is designed with the Extended Kalman Filter. And it utilizes the orbit calculated from the Pseudo-range as observed data. The performance of the on-board orbit determination method implemented in the GPS-12 receiver is demonstrated using the GNSS simulator. Orbit determination performance using high precise orbit propagator was analyzed in comparison to the orbit determination result using $J_2$ orbit propagator. The analysis result showed that position and velocity error are improved from 43.61 m($3{\sigma}$) to 23.86 m($3{\sigma}$) and from 0.159 m/s($3{\sigma}$) to 0.044 m/s($3{\sigma}$) respectively.