• Title/Summary/Keyword: GPS positioning

Search Result 1,591, Processing Time 0.028 seconds

AP Selection Criteria for UAV High-precision Indoor Positioning based on IEEE 802.11 RSSI Measurement (IEEE 802.11 RSSI 기반 무인비행로봇 실내측위를 위한 AP 선택 기법)

  • Hwang, Jun Gyu;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1204-1208
    • /
    • 2014
  • As required performance of UAV (Unmanned Aerial Vehicle) becomes more complex and complicated, required positioning accuracy is becoming more and more higher. GPS is a reliable world wide positioning providing system. Therefore, UAV generally acquires position information from GPS. But when GPS is not available such as too weak signal or too less GPS satellites environments, UAV needs alternative positioning system such as network positioning system. RSSI (Received Signal Strength Indicator) based positioning, which is one method of network positioning technologies, determines its position using RSSI measurements containing distance information from AP (Access Point)s. In that method, a selected AP's configuration has strong and tight relationship with its positioning errors. In this paper, for, we additionally account AP's configuration information by adopting DOP (Dilution of Precision) into AP selection procedures and provide more accurate RSSI based positioning results.

Analysis of Pseudolite Augmentation for Vessel Berthing

  • Cho, Deuk-Jae;Park, Sang-Hyun;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.15-19
    • /
    • 2006
  • GPS has been increasingly exploited to provide positioning and navigation solutions for a variety of applications. In vessel berthing application, however, there are stringent requirements in terms of positioning accuracy, availability and integrity that cannot be satisfied by GPS alone. This is because the performance of satellite-based positioning and navigation systems are heavily dependent on both the number and the geometric distribution of satellite tracked by receivers. Due to the limited number of GPS satellites, a sufficient number of ‘visible’ satellites cannot be sometimes guaranteed. This paper discusses some issues associated with the implementation of ground-based pseudolite augmentation for vessel berthing. Pseudolite means small transmitter that transmits GPS-like signals in local area. Actually, pseudolite can play three different roles in GPS augmentation scheme, depending on the operational conditions. Firstly, in the case of kinematic GPS operation where there are no signal blockages, and more than five satellites are available, additional pseudolites strengthen the GPS satellite-pseudolite geometry, and more accurate and reliable positioning solution can be achieved. Secondly, in the case when there are adverse GPS operational environments in which the number of tracked satellites is less than four, pseudolites can complement the GPS signals. In the third case, GPS signals are completely unavailable, such as when operated indoor. In such cases the pseudolites can replace the satellite constellation. However, the first role will be considered in this paper, since more than four satellite signals can usually be tracked in most marine applications. This paper presents that the pseudolite-augmented precise positioning system can provides continuous centimeter-level positioning accuracy through comparison analysis of RDOP simulation result of the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation.

  • PDF

Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.

Development of GPS-RTK Algorithm for Improving Geodetic Performance in Short Baseline (단기선 측지 성능 향상을 위한 GPS-RTK 알고리즘 개발)

  • Choi, Byung-Kyu;Lee, Sang-Jeong;Park, Jong-Uk;Baek, Jeong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.461-467
    • /
    • 2009
  • Relative positioning technique by GPS that can obtain the high positioning accuracy has been used for generation of high precision positioning with elimination or the reduction of the common errors. This paper gives some algorithms for RTK and considers the filter to estimate the positioning information and integer ambiguities at each epoch in the whole algorithms. The extended kalman filter has been employed to estimate the state parameters and the modified LAMBDA to resolve the integer ambiguities. The data processing was performed by GPS single frequency and dual frequency in short baseline. The verification procedure of these positioning compared with results from Bernese 5.0 software. We presented some statistic values on positioning errors and the rates of integer ambiguity resolution.

An Indoor Positioning System Using Time-Synchronized Switching GPS Repeater (시각동기 스위칭 GPS 중계기를 이용한 실내측위 시스템)

  • Im Sung-Hyuck;Jee Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.789-797
    • /
    • 2006
  • A new method for the GPS repeater based indoor positioning is proposed and its feasibility is verified by experiments in previous paper. But the problems how can identify switching GPS repeater's ID and when switching will be occurred are remained. To solve the problem faced with, we propose the time synchronized switching GPS repeater and the methods of the detection of switching time and the estimation of TDOA. First, switching GPS repeater retransmits the signals synchronized on GPS time, sequentially. Always, first switching time is synchronized with 1 PPS. Second, we formulate the detection of switching time and the estimation of TDOA and propose the various methods. No method is existed absolutely superior to others in any conditions but the method is existed superior to others in specific condition. Finally, feasibility of indoor positioning using time-synchronized switching GPS repeater is evaluated through experiments in anechoic chamber and general environment with multipath.

Analysis of the Protection Ratio of GPS System in the Presence of RF Interference Radiated by UWB System (UWB 시스템의 간섭 신호에 대한 GPS 보호 비 분석)

  • Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo;Cho, Hyun-Mook;Hong, Hyun-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.208-213
    • /
    • 2011
  • This paper analyzes potential interference effects of Ultra Wide Band(UWB) on Global Positioning System(GPS) which is providing safety service. For the interference analysis, positioning error method is used to determine the minimum protection distance to meet positioning error of 2.5 m below and Minimum Coupling Loss(MCL) method is used to determine the required protection ratio(I/N) from the protection distance of UWB transmitter and GPS receiver to meet positioning error of 2.5 m below. In a result, the minimum protection distance to meet positioning error of 2.5 m below was about 10 m and the protection ratio to meet positioning error 2.5 m below was -20 dB. The protection ratio proposed in this paper is the same value of the protection ratio of safety service proposed by ITU-R. The obtained protection ratio can be used for the protection standard of domestic GPS system for the safe of life service.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

The accuracy decision for longitude and latitude of GPS receiver using fuzzy algorithm

  • Yi, Kyung-Woong;Choi, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2382-2386
    • /
    • 2003
  • The Global Positioning System(GPS) is a satellite based precise positioning system avaliable worldwide. The GPS have many error sources. The earth's ionosphere and atmosphere cause delays in the GPS signal that translate into position errors. Some errors can be factored out using mathematics and modeling. The configuration of the satellites in the sky can magnify other errors. The problem of accuracy on GPS measurement data can be meaningful. In this study, we propose the method for GPS positioning accuracy improvement. The FUZZY set theory on PDOP(Position Dilution of Precision) and SNR(Signal to Noise Ratio) provide improved for measured positioning data. The accuracy of positioning has been improved by selecting data from original using the FUZZY set theory on PDOP and SNR.

  • PDF

A Repeater-Assisted Indoor GPS Signal Acquisition and Tracking (중계기 도움방식의 실내 GPS 신호 획득 및 추적)

  • Song, Ha-Yeong;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.963-968
    • /
    • 2008
  • A new method to deal with GPS indoor positioning by means of time synchronized switching GPS repeater has been developed by authors[1]. But the developed indoor positioning system has problems. Therefore, we proposed a method for indoor positioning using GNSS Repeater-Assisted. To solve the 3-dimensional user's position, the 4 or more retransmission antennas are needed in the previously proposed methods. If a GPS repeater periodically transmits the signal like as pseudollite, the information for assisting an acquisition and tracking can be informed to receiver. Then, the user position can be calculated using the induced weak signal. The advantage of the proposed algorithm is use of only 1 re-transmission antenna because the re-transmitted signal are not used for positioning but used for assisting an acquisition and tracking weak signals induced indoor. We analyze the propose algorithms through the experiment and performed the test of feasibility.

A Study on Two-Dimensional Positioning Algorithms Based on GPS Pseudorange Technique

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.705-708
    • /
    • 2010
  • In the paper, we have studied on algorithms for two-dimensional positioning based on GPS pseudorange Technique. First, the linearized state equation was mathematically derived based on GPS pseudorange technique. Second, the geometry model with respect to triangles formed using unit-vectors were proposed for investigation of land-based radio positioning. Finally, the corresponding mathematical formulations for DOP values and covariance matrix were designed for two-dimensional positioning.

  • PDF