• Title/Summary/Keyword: GPS network

Search Result 674, Processing Time 0.026 seconds

Comparison of TDOA Location Algorithms for Indoor UWB Positioning (UWB 실내 측위를 위한 TDOA 위치결정기법)

  • Kong Hyonmin;Sung Taekyung;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Most of location systems use RF signal. Because multipath is too severe at indoor environment, RF signal are usually used in outdoor positioning such as GPS. To overcome the difficulty at indoor positioning, m positioning is recently developed and is being vigorously studied. Some standardizations on UWB are in progress at IEEE 802.15 committee. In developing UWB positioning system, we should consider the synchronization of sensor network, positioning algorithm, sensor allocation, and so on. This paper presents a comparison of TDOA positioning algorithms that are widely used in location systems. Two algorithms are compared; one is derived by linearization, and the other is by analytic solution(CH algorithm). Simulation results show that the CH algorithm is superior to the linearized least square at indoor environment in that CH algorithm shows consistent positioning performance regardless of the visibility and geometry of basestations.

Machine Vision based Quality Management System for Tele-operated Concrete Surface Grinding Machine (원격조종 콘크리트 표면절삭 장비를 위한 머신비전 기반 품질관리 시스템)

  • Kim, Jeonghwan;Phi, Seung Woo;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1683-1691
    • /
    • 2013
  • Concrete surface grinding is frequently used for flatness of concrete surface, concrete pavement rehabilitation, and adhesiveness in pavement construction. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding highly depend on the skills of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. Also, The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the integrated program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

A Hybrid Course-Based Routing Protocol Suitable for Vessel Ad Hoc Networks (선박 애드 혹 네트워크에 적합한 복합적 항로기반 경로배정 프로토콜)

  • Son, Joo-Young;Mun, Seong-Mi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.775-784
    • /
    • 2008
  • It is not easy to access very high speed Internet services at sea due to some technical and economical problems. In order to realize the very high speed Internet services at sea like on land, new communication network models based on MANET should be adopted. In this paper, a new MANET model at sea is provided, which considered the ocean environments, and the characteristics and movement of vessels. On the basis of the fact that most vessels navigate on the predetermined courses, which are the shortest paths between source and destination ports in most cases, a type of location oriented routing protocol is proposed in this paper. The Hybrid Course-Based Routing Protocol(HCBR) makes use of the static information such as courses and positions of ports to proactively find the shortest paths not only among ports but also the cross points of courses. HCBR also makes use of the locational information of vessels obtained via GPS and AIS systems to reactively discover the shortest route by which data packets are delivered between them. We have simulated the comparison of the performance of HCBR with those of LAR scheme 1 and scheme2, the most typical protocols using geographical information. The simulation results show that HCBR guarantees the route discovery even without using any control packet. They also show that HCBR is more reliable(40%) and is able to obtain more optimal routes(10%) than LAR scheme1 and scheme2 protocols.

A Study on Interworking of Intelligent IoT Semantic Information Using IoT-Lite Ontology (IoT-Lite 온톨로지를 활용한 지능형 사물인터넷 시맨틱 정보연동에 관한 연구)

  • Park, Jong Sub;Hong, June Seok;Kim, Wooju
    • Journal of Information Technology Services
    • /
    • v.16 no.2
    • /
    • pp.111-127
    • /
    • 2017
  • Computing Performance, sensor, storage, memory, and network costs have been steadily declining, and IoT services have recently become more active. The Internet of Things is linked with Big Data to create new business, and public institutions and corporations are hurry to import Internet of things. As the importance of the Internet of things has increased, the number of devices supporting the IoT has rapidly increased. With the development of the Internet of Things, various types of Internet services are being developed. For this reason, there is an increasing demand for IoT service designers and developers for IoT service case automatic search technology. IoT service designers can avoid duplication with existing services through service case retrieval and developers can save cost and time by combining existing reusable service equipment. This paper proposes IoT-Lite ontology for IoT and Semantic Web service to solve the above-mentioned problems. The existing ontologies for IoT, despite its many advantages, are not widely used by developers because it has not overcome the relatively slow drawbacks of increasing complexity and searching for development. To complement this, this study uses the IoT-Lite ontology introduced by W3C as a model and a semantic web service for automatic system retrieval. 3D camera, GPS, and 9-axis sensor, and IoT-Lite designed by IoT-Lite technique are integrated with the semantic technique and implemented directly.

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

Using a Spatial Databases for Indoor Location Based Services (실내위치기반서비스를 위한 공간데이터베이스 활용기법)

  • Cho, Yong-Joo;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • There is a growing interest in ubiquitous-related research and applications. Among them, GPS-based LBS have been developed and used actively. Recently, with the increase of large size buildings and disastrous events, indoor spaces are getting attention and related research activities are being carried out. Core technologies regarding indoor applications may include 3D indoor data modeling and localization sensor techniques that can integrate with indoor data. However, these technologies have not been standardized and established enough to be applied to indoor implementation. Thus, in this paper, we propose a method to build a relatively simple 3D indoor data modeling technique that can be applied to indoor location based applications. The proposed model takes the form of 2D-based multi-layered structure and has capability for 2D and 3D visualization. We tested three prototype applications using the proposed model; CA(cellular automata)-based 3D evacuation simulation, network-based routing, and indoor moving objects tracking using a stereo camera.

  • PDF

Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells

  • Kim, Soo Min;Cho, Soo Young;Kim, Min Woong;Roh, Seung Ryul;Shin, Hee Sun;Suh, Young Ho;Geum, Dongho;Lee, Myung Ae
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.551-571
    • /
    • 2020
  • Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.

Technology of Sensors with Human Sensitivity (인간과 같은 감도를 가진 오감센서 기술)

  • Song, Byung-Taeck
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Internet of Things era is approaching where all the things are equipped with smart sensors and communicate through internet. The three core technologies of the Internet of Things are 'detection technology' to get information from things and the environment, 'wired and wireless communications and network infrastructure skills' that support to connect things to the internet, and 'service interface technology' that processes the information appropriate to various services. Smart sensor application can expand to smartphone, smart cars, smart home systems, wearable electronic devices, telemedicine systems, and environmental monitoring systems, etc. In particular, technologies that mimic the five human senses. This study reviews the biological principles of the human senses and the principles of operation, research & development status, technology trends and market analysis of the sensors.

A Study on the Calculation of the Area through the Three Dimensional Terrain Model (3차원 지형모델을 이용한 면적산출에 관한 연구)

  • 강인준;장용구;김상석;김윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • These days, surveying instruments are developing rapidly and the precision is improving continuously. The building of three dimensional terrains of high precision are possible and the calculation of the areas or the volumes have high precision due to the development of the technique of the spatial information system using computer. But actually, in construction site they calculate two-dimensional area using the traditional method, plate table surveying, planimeter, and then get three-dimensional area through multiplying two-dimensional area by the slope correction factor. In this study, we show the defect and inefficiency of the calculation of area by the traditional methods and survey the area with Electric Distance Measurement and GPS instrument. With this data, we made the three dimensional terrain model and calculated two-dimensional area, three-dimensional area. After that, we compared areas that calculated by algorithm of triangulated irregular network and analysis of grid method with standard area that calculated by the traditional method. Finally, this paper suggested more effective and precious method in calculating three-dimensional area.

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF