• Title/Summary/Keyword: GPS navigation

검색결과 1,412건 처리시간 0.028초

정밀 GPS 좌표해석기반의 선박항법시스템 개발을 통한 해양지리정보체계의 구축에 관한 연구 (Study of the Construction of Marine GIS through the Development of Ship-Navigation System Based on the Precise Coordinate Analysis of GPS)

  • 장용구;문두열;정범석
    • 한국해안해양공학회지
    • /
    • 제16권1호
    • /
    • pp.39-46
    • /
    • 2004
  • 우리나라의 GIS 구축을 육상과 해상으로 나누어 볼 때 육상부분은 국가지리정보체계사업에 의해 대도 심지 중심으로 거의 구축이 완료된 상태이다. 그러나. 해상부분에 있어서의 GIS 구축은 해양수산부가 중심이 되어 구축중이나 아직 지리정보와 속성정보의 정의와 초기구축단계에 있는 실정이다. 지리정보체계는 보다 효율적인 활용방안을 위해 GPS 항법 및 위치추적시스템과 연결되어 그 파급효과를 극대화시키는 연구가 많이 이루어지고 있다. GPS는 정확도면을 기준으로 볼 때 항법용과 정밀측량용으로 나누어진다. 현재는 GPS 기술이 상당히 발전하여 저가격의 정밀측량용 GPS 장비가 소개되고 있지만, 아직은 그 비용 면에서 사용자가 원하는 정도의 저 가격은 되지 못하고 있는 실정이다. 따라서, 자동차나 선박항해를 위해 사용되는 GPS 장비는 저가격의 항법용 GPS 장비가 현재 많이 사용되고 있다. 본 연구는 항법용의 저가격의 GPS 장비를 이용하여 해양부분에 있어서 정밀선박항법 및 위치추적시스템으로 활용하기 위해 측지학적인 좌표해석을 기본으로 한 선박항법시스템을 구축하는 것이다. 또한, 본 연구를 통하여 각각의 선박항법과 더불어 관리국에서 많은 선박을 관리하기 위한 인터넷 GIS 구축에 대한 필요성을 제시하고자 한다.

Enhancement of Continuity and Accuracy by GPS/GLONASS Combination, and Software Development

  • Kang, Joon-Mook;Lee, Young-Wook;Park, Joung-Hyun
    • Korean Journal of Geomatics
    • /
    • 제2권1호
    • /
    • pp.65-73
    • /
    • 2002
  • GPS in the United States and GLONASS of the old Soviet Union are used currently as satellite navigation systems. Plans are being made to use the Galileo satellite system in Europe, and these plans focus on a combined application of the satellite navigation systems. In this study, we examined the possibility of effective application of a combination of GPS/GLONASS in urban areas, where 3-dimensional positioning is impossible with GPS alone. We analyzed the 3-D coordinate deviation of a GLONASS satellite by integration interval and compared it with GLONASS satellite coordinates in precise ephmerides by transforming it into WGS84. We also programmed GPS/GLONASS, analyzed 3-D positioning accuracy by static surveying and kinematic surveying with Ashtech Z18 receivers and Legacy receivers, and then compared the results to those of GPS surveying. As a result, we are able to decide the integration interval for producing GLONASS satellite coordinates in navigation and geographical information and construct a GPS/GLONASS data processing system by developing a DGPS/DGLONASS positioning program. If more than four GLONASS satellites are observed, the accuracy of GPS/GLONASS is better than that of GPS positioning. As a result of kinematic surveying in a congested urban area with skyscrapers, we discovered that the GPS/LONASS combination is very effective.

  • PDF

RTK-GPS에 의한 노선측량에서 이동국의 속도에 따른 정확도 분석 (Accuracy Analysis of RTK-GPS Rover Speed in Route Surveying)

  • 최병길;이형수
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.139-144
    • /
    • 2004
  • This study aims to analyze the accuracy of rover speed change in route surveying using RTK-GPS. Route surveying methods using GPS contain Static, DGPS, and RTK-GPS. Much research of navigation system, positioning of vehicles by DGPS, and accuracy analysis by GPS surveying have already been done. From this study, it is firstly found that DGPS is suitable for car navigation and sea navigation with an error of meter scale but not good for detailed construction, designing maps and updating GIS databases. Secondly, RTK-GPS can be used for managing gas pipes, water supply and drain pipes and fiber-optic cable that are needed to be controlled in a real time basis. Thirdly, since the accuracies of route surveying by RTK-GPS and DGPS are not correctly matched with the change of rover speed, the choice of route surveying method from those two should follow the need of accuracy fidelity Further study should focus on Cycle Slip problem and coordinate change problem in tunnel and mountainous areas.

  • PDF

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권1호
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Performance Testing of Integrated Strapdwon INS and GPS

  • Lee, Sang-Joog;Yoo, Chang-Sun;Shim, Yo-Han;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.67-77
    • /
    • 2001
  • In recent navigation system, the profitable solution is to integrate the GPS and Stapdwon INS (SDINS) system and its integration allows compensation for shortcomings of each system. This paper describes the hardware preparation and presents the test results obtained from the automobile test of the developed system. The automobile tests was conducted with two kinds of inertial sensors and GPS receivers : short range and middle range test, to verify and evaluate the performance of the integrated navigation system. The reference of position is given by the Differential GPS(DGPS) which has cm-level accuracy to compare the accuracy of system. Kalman filtering is used for integrating GPS and SDINS and this filter effectively allows the long-term stability of GPS to correct and decrease the time deviation error of SDINS.

  • PDF

An Approach for GPS Clock Jump Detection Using Carrier Phase Measurements in Real-Time

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.429-435
    • /
    • 2012
  • In this study, a real-time architecture for the detection of clock jumps in the GPS clock behavior is proposed. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term showing sudden jumps occasionally. As satellite clock anomalies influence on GPS measurements which could deliver wrong position information to users as a result, it is required to develop a real time technique for the detection of the clock anomalies especially on the real-time GPS applications such as aviation. The proposed strategy is based on Teager Energy operator, which can be immediately detect any changes in the satellite clock bias estimated from GPS carrier phase measurements. The verification results under numerous cases in the presence of clock jumps are demonstrated.

A-GPS (Assisted GPS), is this the system we need for indoor location & navigation?

  • Magnusson, Lars E;Gronqvist, Oskar
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.67-70
    • /
    • 2006
  • For a long time the GSM and GPS world has been living side by side. There have been some half hearted attempts to invoke the GPS unit into GSM units but performance and usability has suffered. The A-GPS approach is interesting and we wanted to verify general performance for fleet application and alarm/emergency situations. The result is now promising but still more to enhancements are anticipated. We achieved near acceptable availability (${\sim}70%$) under indoor conditions. Accuracy was as anticipated (50-100 meter) as we are using reflected signals. Time to first fix is in general good in outdoor conditions but too long for indoor conditions (45-60 seconds). We would like manufactures to put some more effort to get better performance in the future as test with Nordnav high sensitivity measurement system proves that conditions indoor are at a level where better performance should be possible.

  • PDF

Tightly-Coupled GPS/INS/Ultrasonic-Speedometer/Barometer Integrated Positioning for GPS-Denied Environments

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, Lawoo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.387-395
    • /
    • 2020
  • Accuracy of an integrated Global Positioning System (GPS) / Inertial Navigation System (INS) relies heavily on the visibility of GPS satellites. Especially, its accuracy is dramatically degraded in urban canyon due to signal obstructions due to large structures. In this paper, we propose a new integrated positioning system that effectively combines INS, GPS, ultrasonic sensor, and barometer in GPS-denied environments. In the proposed system, the ultrasonic sensor provides velocity information along the forward direction of moving vehicle. The barometer output provides height information compensated for the pressure variation due to fast vehicle movements. To evaluate the performance of the proposed system, an experiment was carried out by mounting the proposed system on a test car. By the experiment result, it was confirmed that the proposed system bears good potential to maintain positioning accuracy in harsh urban environments.

Study on the Application of GPS to Monitoring Land Subsidence

  • Shu, Cheng;Xinzhou, Wang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.407-410
    • /
    • 2006
  • There are many problems which takes long time and lots of work to monitor land subsidence by traditional method. These problems can be solved by GPS. Combining with the field example, this paper studies the application of GPS to monitoring land subsidence, analyses the advantages and errors of GPS survey method, and puts forth the suitable conditions of monitoring land subsidence by GPS.

  • PDF

Vehicle Platooning via Sensor Fusion of GPS Carrier Phase and Millimeter-Wave Radar

  • Woo, Myung-Jin;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.5-23
    • /
    • 2001
  • This paper is concerned with the vehicle platooning in the AHS (Automated Highway Systems). For this, a relative navigation system is developed for the vehicles operating as a platoon. The relative navigation system is based on two sensors including GPS and MMWR (Millimeter-Wave Radar) and the federated Kalman Iter processing measurements of them. The architecture of this system requires GPS measurements of a preceding vehicle via communication link. Even if GPS measurements are available, they contain errors which are unacceptably high in vehicle platooning. Therefore, GPS carrier phase is considered. Integer ambiguities of GPS carrier phase measurements are determined by using MMWR ...

  • PDF