• Title/Summary/Keyword: GPS deformation monitoring

Search Result 24, Processing Time 0.018 seconds

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

A Study on Utilization of NTRIP Data Delivery and Virtual RINEX from Seoul Metro Government Network-RTK System (서울특별시 네트워크 RTK 시스템의 NTRIP 데이터 전송 및 Virtual RINEX의 활용)

  • Gwak, In-Sun;Nam, Dae-Hyun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2010
  • Since January 2009, Seoul Metro Government(SMG) is operating own Network RTK Systems connecting four(4) GNSS Reference Stations which are installed inside Seoul Metro City area. SMG is currently providing VRS data service via wireless internet for Network-RTK and RINEX data observed from GNSS Reference Stations. This paper will discuss utilization of data available from SMG Network-RTK System for various applications, and present the test results on practicalities of Virtual RINEX data. For the utilization of data available from SMG Network- RTK system, 1)NTRIP data delivery of GNSS realtime observables streaming and converting to RINEX at receiving side, 2) monitoring deformation of bulky structures using GNSS observation were discussed. In addition to those discussion, 3) broadcasting VRS correction data for job site via radio modem after acquiring such correction data on-line using NTRIP based GNSS Internet Radio from SMG Network-RTK System were introduced. For the test results on practicalities of Virtual RINEX data, 1) the post-processing results of the GNSS observation data on a certain point with GNSS Reference Station data have been compared to the post-processing results of Virtual RINEX data on the same point generated from SMG Network-RTK System, and 2) VRS RTK positioning results for a certain point and post-processing results of Virtual RINEX data for the point were compared. The results showed only a few mm difference, and the high possibility for using Virtual RINEX data for post-processing applications.

ADVANTAGE OF USING FREE NETWORK ADJUSTMENT TECHNIQUE IN THE CRUSTAL MOVEMENT MONITORING GEODETIC NETWORKS

  • AhmedM.Hamdy;Jo,Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • There are numerous adjustment techniques that deal with the adjustment of geodetic networks but the least squares adjustment is the most common one. During the network adjustment procedure two techniques can be used, the free network adjustment technique and the constrained network adjustment technique. In order to determine the optimum technique for adjusting the geodetic networks, which used for the geodynamical purposes, data from two different geodetic networks "Sinai geodetic network, Egypt, and HGN network, South Korea" had been examined. The used networks had a different configuration and located in different areas with different seismic activity. The results show that both techniques have a high accuracy and no remarkable differences in terms of RMS. On the contrary, the resulted coordinates shows that the constrained network adjustment technique not only cause a remarkable distortion in the station final coordinates but also if the fixed points that define the datum parameters are changed different solutions for the coordinates will be determined. This distortion affect not only in the determination of point displacement but also in the estimation of the deformation parameters, which play a significant role in the geodynamical interpretation of results. Comparing the results which obtained from both techniques with the widely known geodynamical models of the area reviles that the free network adjustment technique results are clearly match with these models, while those obtained from the constrained technique didn’t match at all. By considering the results it seams to be that the free network adjustment technique is the optimum technique, which can be used for the geodetic network adjustment.

  • PDF