• Title/Summary/Keyword: GPS antennas

Search Result 93, Processing Time 0.023 seconds

A Spoofing Detection Scheme Based on Elevation Masked-Relative Received Power in GPS Receivers using Multi-band Array Antenna

  • Junwoo Jung;Hyunhee Won;Sungyeol Park;Haengik Kang;Seungbok Kwon;Byeongjin Yu;Seungwoo Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Many spoofing detection studies have been conducted to cope with the most difficult types of deception among various disturbances of GPS, such as jamming, spoofing, and meaconing. In this paper, we propose a spoofing detection scheme based on elevation masked-relative received power between GPS L1 and L2 signals in a system using a multi-band array antenna. The proposed scheme focuses on enabling spoofing to be normally detected and minimizes the possibility of false detection in an environment where false alarms may occur due to pattern distortion among elements of an array antenna. The pattern distortion weakens the GPS signal strength at low elevation. It becomes confusing to detect a spoofing signal based on the relative power difference between GPS L1 and L2, especially when GPS L2 has weak signal strength. We propose design parameters for the relative power threshold including beamforming gain, the minimum received power difference between L1 and L2, and the patch antenna gain difference between L1 and L2. In addition, in order to eliminate the weak signal strength of GPS L2 in the spoofing detection process, we propose a rotation matrix that sets the elevation mask based on platform coordinates. Array antennas generally do not have high usefulness in commercial areas where receivers are operated alone, but are considered essential in military areas where GPS receivers are used together with signal processing for beamforming in the direction of GPS satellites. Through laboratory and live sky tests using the device under test, the proposed scheme with an elevation mask detects spoofing signals well and reduces the probability of false detection relative to that without the elevation mask.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

The Determination of WGS84 coordinates for Seoul National University Radio Astronomy Observatory (GPS를 이용한 서울대학교 전파천문대의 WGS84 좌표 결정)

  • JOH JOENG-HO;PARK PIL-HO;PARK JONG-UK;HONG SEUNG-SOO;KOO BON-CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.31-34
    • /
    • 2000
  • We determined the precise three dimensional WGS84 Coordinates and the sea level height of Seoul Radio Astronomy Observatory (SRAO). In this study, we performed the simultaneous GPS observations at SRAO and Seoul GPS Reference Station(SGRS) of Korea Astronomy Observatory(KAO) for 3.5 hours from 17KST on October 27, 1999. We employed two different antennas, i.e., chokering antenna at SGRS of KAO and L1/L2 compact with groundplane antenna at SRAO. But we employed same type of receivers, i.e., Trimble 4000SSI at both observing places. The observed data were processed by GPSURVEY 2.30 software of Trimble with L1/L2 ION Free technique and broadcasting ephemeris of GPS Satellites because of very short baseline between SGRS of KAO and SRAO. We determined WGS84 latitude, longitude, height and the sea level height of SRAO with $37^{\circ}\;27'\;15.'\;6846N\pm0.'\;0004,\;126^{\circ}\;57'\;19.'\;0727E\pm0.'\;0002,\;204.89m\pm0.02m,\;181.38m\pm0.17m$, respectively.

  • PDF

A Study on the Amplification Block for Integrated Antenna Module Applicable to Vehicles (차량용 통합 안테나 모듈용 증폭단에 관한 연구)

  • Go, Min-Ho;Pyo, Seung-Chul;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • In this paper, we designed and fabricated the active amplification block for the integrated antenna module. The fabricated amplification module have a proper gain and low noise figure in the band of AM/FM band, T-DMB band and GPS band, and show good isolation performance for each band. Manufactured circuits satisfied the gain performance 7 dB in AM band, 11 dB in FM band, 10 dB in T-DMB, and 17 dB in GPS band. The integrated amplification block was realized by 35 mm*35 mm size, and was shown as the same sensitivity performance as compared with a conventional reference antennas.

  • PDF

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

A Study on the accuracy of Rangefinder between vessels by use of GPS (GPS를 이용한 선간거리계의 정확도에 관한 연구)

  • 김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 1999
  • The experimented rangefinder consist of sets of V/A-Code GPS and sets of L1 C/A-code & carrier phase receivers connected by two spread spectrum radio modems in order to measure relative range and bearing between two ship antennas by real time, comparing and analyzing accuracy of both GPS receivers at the fix point on the land by means of executing zero baseline test by C/A code and by carrier phase as well as measuring distance range 5m, 10m, 15m between each other receivers. The results from the measurement of relative range and bearing are as follows as ;1. According to the results from zero baseline test, the average error by C/A-code receiver is less than 0.1m, which proves theories from published books but when each GPS receivers track different satellites, the range accuracy error becomes up to 100m by means of S/A. Because of this sudden wide range error, rangefinder is not appropriate at relative range measurement without additional modification of the algorism of the GPS receiver itself.2. According to relative range measurement by Carrier Phase and zero baseline test at static condition, the range error is less than 3.5cm in case that it passes more than 5 minutes after GPS sets can track simultaneously more than 6 satellites. Its main reason is understood that the phase center of antenna is bigger than geodetic antenna.3. When range measurement of two receivers from 5m, to 10m to 15m, the each range error is 0.340m, 0.190m, 0.011m and each standard variation is 0.0973m, 0.0884m, 0.0790m. The range error and standard variation are in inverse proportion to distance between two receivers. 4. L1 Carrier Phase GPS generally needs 5 minutes to fix and during this ambiguity search, the relative range and bearing angle is shown to be various.

  • PDF

Improvement of Success Rate on LEO Satellite Attitude Determination Using GPS Carrier Phase Measurements (GPS를 이용한 저궤도 위성 자세 결정의 미지정수 결정 성공확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In;Jun, Hyang-Sig;Joo, Jung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.45-50
    • /
    • 2005
  • To determine precise position GPS carrier phase measurements are used. In addition, the multi-antenna system consisting of 2 or more GPS antennas can make attitude determination effectively. When GPS carrier phase measurements are used the integer ambiguity must be fixed. The success rate is used to validate the integer ambiguity. For LEO satellite attitude determination the double difference carrier phase measurements are used, the success rate is calculated using the covariance matrix and the measurement matrix. The constraint that LEO satellite position vector and attitude vector is orthogonal is suggested for improving the success rate. The LEO satellite orbit model is KITSAT3. The results of the simulation are shown and analyzed.

Bandwidth Broadening for the GPS Microstrip Patch Antenna (GPS용 마이크로스트립 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.73-79
    • /
    • 2015
  • Enhanced bandwidths of the GPS microstrip patch antennas applied by a Wilkinson power divider and a quadrature hybrid were compared. The square patch was designed, and fed by the two port probes for the circuit application. The Wilkinson power divider and quadrature hybrid circuit were designed, and applied to the patch antenna. The designed patch and two circuits were implemented on the FR4 board, and combined together. The measurement of the bandwidth within a voltage standing wave ratio (VSWR) of 2: 1 were 36.5% (1,200~1,775 MHz) in the case of the Wilkinson power divider and 29.84% (1,230~1,700 MHz) in the case of the quadrature hybrid. Axial ratios (AR) in 3dB were 17.14% bandwidth (1,360~1,630 MHz) and 15.87% bandwidth (1,400~1,650 MHz), respectively. The application of the Wilkinson power divider is wider than that of the quadrature hybrid. The peak gains in the anechoic chamber at the GPS center frequency were measured as 2.84 dBi and 2.75 dBi, respectively.

Design of a 5-patch GPS array antenna for anti-jamming (GPS 방해신호 회피용 5-패치 배열 안테나 설계)

  • Chae, Gyoo-Soo;Lim, Joong-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.417-422
    • /
    • 2013
  • In this paper, the implementation of a null-steering antenna array using GPS patch antennas is suggested. The antenna array consists of five patch antenna elements fabricated on the ceramic substrate. The antenna element proposed here is a typical circular polarization patch and a prototype patch array antenna is manufactured on the PCB. The antenna has one reference element located at the center and other four elements are placed at the corners. A null in the direction of the jamming signal can be produced by changing the phases of 4-elements. Simulation results of the array antenna by CST MWS are presented and discussed. The basic performances are measured and the results are shown. The results show that the antenna presented here can be used to remove the signals from the directions of any jammers.

Design and Fabrication of Microstrip Patch Antenna with T-shaped Slits for GPS (T형 슬릿을 갖는 GPS 수신용 마이크로스트립 패치 안테나 설계 및 제작)

  • Lee Eun-Jin;Lee Kwoun-Ig;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.169-175
    • /
    • 2006
  • In this paper, a microstrip patch antenna with the T-shaped slits is designed and fabricated for GPS. The resonant frequency of the microstrip patch antenna with the slits is lower than that of a microstrip patch antenna without the slits so it can be reduced the size of patch. In order to calculate resonant frequency of the microstrip patch antenna with the slits, the resonant frequency formulas are derived from the surface current distribution on microstrip patch antenna. Using the Ensemble 6.0 simulation tool, the accuracy of approximate equations is verified. The microstrip patch antenna with the slits is designed by using these equations. The size of the designed antenna with T-shaped slits can be reduced to 29% compared with that without the slits. The microstrip patch antenna with slits have a very narrow bandwidth. In order to improve the narrow bandwidth of microstrip patch antennas with the slits, a microstrip patch antenna with rectangular slot is proposed. As the result of the measurements, the resonant frequency of the proposed microstrip patch antenna with the T-shaped slits is 1.575GHz and the bandwidth is about 50MHz.