• Title/Summary/Keyword: GPS Recognition

Search Result 130, Processing Time 0.021 seconds

Smart Ship Container With M2M Technology (M2M 기술을 이용한 스마트 선박 컨테이너)

  • Sharma, Ronesh;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.278-287
    • /
    • 2013
  • Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.

A Design and Implementation of Floor Detection Application Using RC Car Simulator (RC카 시뮬레이터를 이용한 바닥 탐지 응용 설계 및 구현)

  • Lee, Yoona;Park, Young-Ho;Ihm, Sun-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.507-516
    • /
    • 2019
  • Costs invested in road maintenance and road development are on the rise. However, due to accidents such as portholes and ground subsidence, the risks to the drivers' safety and the material damage caused by accidents are also increasing. Following this trend, we have developed a system that determines road damage, according to the magnitude of vibration generated without directly intervening the driver when driving. In this paper, we implemented the system using a remote control car (RC car) simulator due to the limitation of the environment in which the actual vehicle is not available in the process of developing the system. In addition, we attached a vibration sensor and GPS sensor to the body of the RC car simulator to measure the vibration value and location information generated by the movement of the vehicle in real-time while driving, and transmitting the corresponding data to the server. In this way, we implemented a system that allows external users to check the damage of roads and the maintenance of the repaired roads based on data more easily than the existing systems. By using this system, we can perform early prediction of road breakage and pattern prediction based on the data. Further, for the RC car simulator, commercialization will be possible by combining it with business in other fields that require flatness.

A Implementation of Electronic Measurement Datum Point Monitoring S/W based on Object-Oriented Modeling for Multi Purpose and High Availability (다목적 및 고활용성을 위한 객체지향 모델링 기반의 전자 측량기준점 모니터링 S/W 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.99-112
    • /
    • 2015
  • Datum point for displaying location and altitude of point has being advantage usefully in various measurement parts. However, datum point has been increasing loss cases owing to weather changes and stratum changes and neglecting meaninglessly. In this paper, we design and implement a multi electronic measurement system monitoring software with functions such as include maximize utilization of existing measurement datum system as well as collected various environment data and detection stratum changes of surround area. Proposed software is implemented to support that reusability and extensibility of software using object oriented modeling method. Our software supports a GUI for electronic measurement datum point administrator as well as for web user and mobile user. Our system can support a graph GUI for various data analysis and reposition in realtime to database that measured location information and various sensing information to prevent loss of electronic measurement datum point and to detected stratum changes. In addition, we include a QR code and RFID recognition function. Finally, we suggest performance evaluation result to confirm stratum changes detection and GPS location error rate.

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.

Analysis on the Popularity and Storytelling of Pokomon GO (<포켓몬GO>의 인기요인과 스토리텔링 분석)

  • Lee, Jae Hong
    • Journal of Korea Game Society
    • /
    • v.16 no.5
    • /
    • pp.159-168
    • /
    • 2016
  • $Pok{\acute{e}}mon$ Go is an augmented reality (AR) game developed jointly by Niantic and Nintendo. It's a new type of augmented reality role-playing game (RPG) where AR elements like location information, visual recognition technology and GPS navigation technology are integrated with the intellectual property of the popular $Pok{\acute{e}}mon$ anime. The global success of $Pok{\acute{e}}mon$ Go can be attributed to the innovative incorporation of AR technologies into the game but also to the utilization of the Pokemon story which had been developed for 20 years. In summary, Pokemon Go is the fruitful result of a successful storytelling that combines the humanistic imagination of a popular, cultural archetype and the engineering imagination of AR game technologies.

The Effect of Spatial Dimension Shifts in Rotated Target Position Search (차원 변환이 회전하는 목표 자극의 위치 탐색에 미치는 영향)

  • Park, Woon-Ju;Jung, Il-Yung;Park, Jeong-Ho;Bae, Sang-Won;Chong, Sang-Chul
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.2
    • /
    • pp.103-121
    • /
    • 2011
  • This study investigated how spatial dimension information and dimensional consistency between learning and testing phase would influence the target search performance. The participants learned spatial layouts of Lego blocks shown in either two- (2D) or three-dimension (3D) and were tested with the rotated stimuli ($0^{\circ}$, $90^{\circ}$, $180^{\circ}$, or $270^{\circ}$ from the initial view) in consistent or inconsistent dimension. Significantly better performance was observed when initial learning display appeared in 2D than in 3D. Particularly, the participants showed difficulties in flexible usage of spatial information presented in 3D especially if the dimensional information in the testing phase also was 3D and required mental rotation. The present study indicates that spatial map presented in 2D may be more useful than 3D in driving situations in which acquired spatial information from navigating device, such as GPS, and location of driver continuously changes.

  • PDF

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

A Study on Development and Utilization of Automatic Parking Survey System (자동주차조사 시스템 개발 및 활용에 관한 연구)

  • Lee, Young Woo;Kwon, Hyuck Jun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.452-461
    • /
    • 2014
  • Conventional parking survey has been usually performed by a person, which has a lot of problems such as decreased mobility, data input error, longer time and expensiveness. Therefore, this study attempted to develop an automatic parking survey method using lately commercialized equipments that were highly efficient imagery interpretation equipments, GPS, and infrared lighting fixtures. In addition, this study developed a parking analysis software that enables to modify and save data, and analyze survey data by the automatic parking survey method. When parking survey is conducted using automatic parking survey method, surveying accuracy is influenced by the running speed of a surveying vehicle, the photographing angle of an imagery interpretation equipment, the gap between parking vehicles and the distance of a surveying vehicle to parking vehicles. Therefore, this study drew optimum conditions by testing on each items for accuracy improvement, and developed a parking analysis software for systematic storage and management of parking survey data, supporting the parking analysis and output the parking analysis result.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.